Previous |  Up |  Next

Article

Keywords:
image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis
Summary:
Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.
References:
[1] Barzilai, J., Borwein, J. M.: Two point step size gradient method. IMA J. Numer. Anal. 8 (1988), 141-148. DOI 10.1093/imanum/8.1.141 | MR 0967848
[2] Bertalmio, M., Vese, L. A., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Processing. 12 (2003), 8, 882-889. DOI 10.1109/tip.2003.815261
[3] Cai, J. F., Chan, R. H., Fiore, C. D.: Minimization of a detail-preserving regularization functional for impulse noise removal. J. Math. Imaging Vision. 27 (2007), 79-91. DOI 10.1007/s10851-007-0027-4 | MR 2374258
[4] Cai, J. F., Chan, R. H., Morini, B.: Minimization of an edge-preserving regularization functional by conjugate gradient type methods, image processing based on partial differential equations. In: Mathematics and Visualization, Springer, Berlin Heidelberg 2007, pp. 109-122. DOI 10.1007/978-3-540-33267-1_7 | MR 2424224
[5] Cai, J. F., Chan, R. H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Problem and Imaging. 2 (2008), 187-204. DOI 10.3934/ipi.2008.2.187 | MR 2395140 | Zbl 1154.94306
[6] Cai, J. F., Chan, R. H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging and Vision 36 (2010), 46-53. DOI 10.1007/s10851-009-0169-7 | MR 2579308
[7] Chan, R., Hu, C., Nikolova, M.: Iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. 11 (2004), 12, 921-924. DOI 10.1109/lsp.2004.838190
[8] Chan, R. H., Ho, C. W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14 (2005), 1479-1485. DOI 10.1109/tip.2005.852196
[9] Chan, T. F., Shen, J., Zhou, H.: Total variation wavelet inpainting. J. Math. Imaging Vision 25 (2006), 107-125. DOI 10.1007/s10851-006-5257-3 | MR 2254441
[10] Chen, T., Wu, H. R.: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8 (2001), 1-3. DOI 10.1109/97.889633
[11] Dai, Y. H., Ni, Q.: Testing different conjugate gradient methods for large-scale unconstrained optimization. J. Comput. Math. 21 (2003), 311-320. MR 1978635 | Zbl 1041.65048
[12] Dai, Y. H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. IEEE SIAM J. Optim. 10 (1999), 177-182. DOI 10.1137/s1052623497318992 | MR 1740963 | Zbl 0957.65061
[13] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91 (2002), 2, 201-213. DOI 10.1007/s101070100263 | MR 1875515 | Zbl 1049.90004
[14] Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149-154. DOI 10.1093/comjnl/7.2.149 | MR 0187375 | Zbl 0132.11701
[15] Gilbert, J. C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992), 21-42. DOI 10.1137/0802003 | MR 1147881 | Zbl 0767.90082
[16] Hager, W. W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005), 170-192. DOI 10.1137/030601880 | MR 2177774 | Zbl 1093.90085
[17] Hager, W. W., Zhang, H.: A survey of nonlinear conjugate gradeint methods. http://www.math.u.edu/$\sim$ hager, 2005. MR 2548208
[18] Hestenes, M. R., Stiefel, E. L.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 (1952), 409-436. DOI 10.6028/jres.049.044 | MR 0060307 | Zbl 0048.09901
[19] Hwang, H., Haddad, R. A.: Adaptive median filters: New algorithms and results. IEEE Trans. Image Process. 4 (1995), 499-502. DOI 10.1109/83.370679 | MR 0453105
[20] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1989), 503-528. DOI 10.1007/bf01589116 | MR 1038245 | Zbl 0696.90048
[21] Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20 (2004), 1-2, 99-120. Special issue on mathematics and image analysis. DOI 10.1023/b:jmiv.0000011920.58935.9c | MR 2049784
[22] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980), 773-782. DOI 10.1090/s0025-5718-1980-0572855-7 | MR 0572855 | Zbl 0464.65037
[23] Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, New York 2006. DOI 10.1007/978-0-387-40065-5 | MR 2244940 | Zbl 1104.65059
[24] Polyak, B. T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969), 94-112. DOI 10.1016/0041-5553(69)90035-4
[25] Polyak, E., Ribière, G.: Note sur la convergence de directions conjugées. Francaise Informat Recherche Opertionelle, 3e Année 16 (1969), 35-43.
[26] Powell, M. J. D.: Restart procedures of the conjugate gradient method. Math. Prog. 2 (1977), 241-254. DOI 10.1007/BF01593790 | MR 0478622
[27] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Springer-Verlag, Berlin 1066 (1984), pp. 122-141. MR 0760460 | Zbl 0531.65035
[28] Yua, G., Huanga, J., Zhou, Y.: A descent spectral conjugate gradient method for impulse noise removal. Appl. Math. Lett. 23 (2010), 555-560. DOI 10.1016/j.aml.2010.01.010 | MR 2602408
[29] Yu, G., Qi, L., Sun, Y., Zhou, Y.: Impulse noise removal by a nonmonotone adaptive gradient method. Signal Process. 90 (2010), 2891-2897. Zbl 1197.94151
[30] Zoutendijk, G.: Nonlinear programming computational methods. In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 37-86. MR 0437081 | Zbl 0336.90057
Partner of
EuDML logo