Previous |  Up |  Next

Article

Keywords:
distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup
Summary:
In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty$-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty$-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty$-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation.
References:
[1] Balas, M. J.: Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters. J. Math. Anal. Appl. 133 (1988), 283-296. DOI 10.1016/0022-247x(88)90401-5 | MR 0954706 | Zbl 0647.93036
[2] Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, 1999. DOI 10.1090/surv/070 | MR 1707332 | Zbl 0970.47027
[3] Curtain, R. F.: Finite dimensional compensators for parabolic distributed systems with unbounded control and observation. SIAM J. Control Optim. 22 (1984), 255-276. DOI 10.1137/0322018 | MR 0732427 | Zbl 0542.93056
[4] Glowinski, R., Lions, J.-L., He, J.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. In: Encyclopedia of Mathematics and Its Applications, vol. 117. Cambridge University Press, Cambridge 2008. MR 2404764 | Zbl 1142.93002
[5] Jai, A. El, Pritchard, A. J.: Sensors and Controls in the Analysis of Distributed Systems. English Language Edition. Ellis Horwood Limited, Chichester 1988. MR 0933327
[6] Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numerical Analysis 35 (2015), 1402-1425. DOI 10.1093/imanum/dru038 | MR 3407266 | Zbl 1328.65168
[7] Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I: Abstract Parabolic Systems. In: Encyclopedia of Mathematics and Its Applications, vol. 74. Cambridge University Press, Cambridge 2000. DOI 10.1017/cbo9780511574801 | MR 1745475
[8] Nambu, T.: On stabilization of partial differential equations of parabolic type: boundary observation and feedback. Funkcialaj Ekvacioj, Serio Internacia 28 (1985), 267-298. MR 0852115 | Zbl 0614.93049
[9] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. In: Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York 1983. DOI 10.1007/978-1-4612-5561-1 | MR 0710486 | Zbl 0516.47023
[10] Pritchard, A. J., Townley, S.: Robust compensator design via structured stability radii. Systems Control Lett. 11 (1988), 33-37. DOI 10.1016/0167-6911(88)90108-9 | MR 0949887 | Zbl 0648.93047
[11] Pritchard, A. J., Townley, S.: Robustness of linear systems. J. Differential Equations 77 (1989), 254-286. DOI 10.1016/0022-0396(89)90144-7 | MR 0983295 | Zbl 0674.34061
[12] Sakawa, Y.: Feedback stabilization of linear diffusion systems. SIAM J. Control Optim. 21 (1983), 667-676. DOI 10.1137/0321040 | MR 0710993 | Zbl 0527.93050
[13] Sano, H., Kunimatsu, N.: Feedback stabilization of infinite-dimensional systems with $A^{\gamma}$-bounded output operators. Appl. Math. Lett. 7 (1994), 5, 17-22. DOI 10.1016/0893-9659(94)90065-5 | MR 1350603
[14] Sano, H.: Finite-dimensional $H_{\infty}$ control of linear parabolic systems with unbounded output operators. Int. J. Control 72 (1999), 16, 1466-1479. DOI 10.1080/002071799220119 | MR 1723338
[15] Sano, H.: Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement. J. Math. Anal. Appl. 388 (2012), 1194-1204. DOI 10.1016/j.jmaa.2011.11.011 | MR 2869818 | Zbl 1243.35166
[16] Schumacher, J. M.: A direct approach to compensator design for distributed parameter systems. SIAM J. Control Optim. 21 (1983), 823-836. DOI 10.1137/0321050 | MR 0719515 | Zbl 0524.93054
[17] Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. (In Japanese, translated from the English by K. Z. Liu and Z. H. Luo.). Corona, Tokyo 1997.
Partner of
EuDML logo