[2] Amo, E. de, Carrillo, M. Díaz, Sánchez, J. Fernández:
Characterization of all copulas associated with non-continuous random variables. Fuzzy Sets Syst. 191 (2012), 103-112.
DOI 10.1016/j.fss.2011.10.005 |
MR 2874826
[9] Jaworski, P., Durante, F., Härdle, W., (editors), T. Rychlik:
Copula Theory and its Applications. Lecture Notes in Statistics-Proceedings, Springer, Berlin-Heidelberg 2010.
DOI 10.1007/978-3-642-12465-5 |
MR 3075361
[10] Ling, C. H.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.
MR 0190575 |
Zbl 0137.26401
[11] Łojasiewicz, S.:
An Introduction to the Theory of Real Functions. Third Edition. A Wiley-Interscience Publication, John Wiley and Sons Ltd., Chichester 1988.
MR 0952856
[12] McNeil, A. J., Nešlehová, J.:
Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Stat. 37 (2009), 3059-3097.
DOI 10.1214/07-aos556 |
MR 2541455
[13] McNeil, A. J., Frey, R., Embrechts, P.:
Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton 2005.
MR 2175089 |
Zbl 1347.00025
[14] Natanson, L. P.:
Theory of Functions of a Real Variable. Vol. I, revised edition. Frederick Ungar Publishing, New York 1961.
MR 0148805
[16] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. North-Holland, New York 1983. Reprinted, Dover, Mineola NY, 2005.
MR 0790314 |
Zbl 0546.60010
[17] Sklar, A.:
Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.
MR 0125600