Previous |  Up |  Next

Article

Keywords:
natural operator; Weil bundle
Summary:
We give a classification of all linear natural operators transforming $p$-vectors (i.e., skew-symmetric tensor fields of type $(p,0)$) on $n$-dimensional manifolds $M$ to tensor fields of type $(q,0)$ on $T^AM$, where $T^A$ is a Weil bundle, under the condition that $p\ge 1$, $n\ge p$ and $n\ge q$. The main result of the paper states that, roughly speaking, each linear natural operator lifting $p$-vectors to tensor fields of type $(q,0)$ on $T^A$ is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting $p$-vectors to tensor fields of type $(p,0)$ on $T^A$ and canonical tensor fields of type $(q-p,0)$ on $T^A$.
References:
[1] Dębecki, J.: Canonical tensor fields of type {$(p,0)$} on Weil bundles. Ann. Pol. Math. 88 (2006), 271-278. DOI 10.4064/ap88-3-6 | MR 2260406 | Zbl 1114.58004
[2] Dębecki, J.: Linear liftings of skew-symmetric tensor fields to Weil bundles. Czech. Math. J. 55 (2005), 809-816. DOI 10.1007/s10587-005-0067-0 | MR 2153104 | Zbl 1081.53015
[3] Eck, D. J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. DOI 10.1016/0022-4049(86)90076-9 | MR 0857563 | Zbl 0615.57019
[4] Grabowski, J., Urba{ń}ski, P.: Tangent lifts of Poisson and related structures. J. Phys. A, Math. Gen. 28 (1995), 6743-6777. DOI 10.1088/0305-4470/28/23/024 | MR 1381143 | Zbl 0872.58028
[5] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. MR 0913992 | Zbl 0654.58001
[6] Kol{á}{ř}, I.: Weil Bundles as Generalized Jet Spaces. Handbook of Global Analysis Elsevier, Amsterdam (2008), 625-664 D. Krupka et al. MR 2389643 | Zbl 1236.58010
[7] Kol{á}{ř}, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 109-117. DOI 10.1007/BF00133034 | MR 0982760 | Zbl 0678.58003
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. (corrected electronic version) Springer, Berlin (1993). MR 1202431
[9] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 69-89. DOI 10.1017/S0027763000002774 | MR 0931952 | Zbl 0661.58007
[10] Mikulski, W. M.: The linear natural operators lifting 2-vector fields to some Weil bundles. Note Mat. 19 (1999), 213-217. MR 1816875 | Zbl 1008.58004
Partner of
EuDML logo