Article
Keywords:
Grauert's line bundle convexity; Riemann domain; holomorphic reduction
Summary:
We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert's reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\Bbb {P}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of ${\mathcal O}(1)$.
References:
[1] Andreotti, A.:
Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves. Bull. Soc. Math. Fr. 91 (1963), 1-38 French.
MR 0152674 |
Zbl 0113.06403
[2] Stănăşilă, C. Bănică; O.:
Méthodes Algébriques dans la Théorie Globale des Espaces Complexes. Vol. 2. Traduit du Roumain. Collection ``Varia Mathematica'' Gauthier-Villars, Paris (1977), French.
MR 0508024
[4] Cartan, H.:
Quotients of complex analytic spaces. Contrib. Function Theory Int. Colloqu. Bombay, 1960 Tata Institute of Fundamental Research, Bombay (1960), 1-15.
MR 0139769 |
Zbl 0154.33603
[5] Grauert, H.:
Bemerkenswerte pseudokonvexe Mannigfaltigkeiten. Math. Z. 81 (1963), 377-391 German.
MR 0168798 |
Zbl 0151.09702
[8] Remmert, R.:
Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci., Paris 243 (1956), 118-121 French.
MR 0079808 |
Zbl 0070.30401
[10] Siu, Y.-T.:
Techniques of Extension of Analytic Objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8 Marcel Dekker, New York (1974).
MR 0361154 |
Zbl 0294.32007