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TO TENSORS OF TYPE (¢q,0) ON WEIL BUNDLES
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Abstract. We give a classification of all linear natural operators transforming p-vectors
(i.e., skew-symmetric tensor fields of type (p,0)) on n-dimensional manifolds M to tensor
fields of type (g,0) on TAM, where T is a Weil bundle, under the condition that p > 1,
n > p and n > ¢q. The main result of the paper states that, roughly speaking, each linear
natural operator lifting p-vectors to tensor fields of type (g, 0) on T4 is a sum of operators
obtained by permuting the indices of the tensor products of linear natural operators lifting
p-vectors to tensor fields of type (p,0) on T4 and canonical tensor fields of type (¢ —p,0)
on T4,
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1. INTRODUCTION

In this paper we give a classification of all linear natural operators transforming
skew-symmetric tensor fields of type (p,0) (which we call p-vectors) on n-dimensional
manifolds M to tensor fields of type (q,0) on T4 M, where T4 is a Weil bundle, under
the condition that p > 1, n > p and n > ¢. Similar problems in some special cases
were studied earlier by Kolar [7], Grabowski and Urbanski [4], and Mikulski [10]. The
theorem we prove here generalizes the results of [2] and [1]. The former of the two
papers was devoted to the case ¢ = p, whereas in the latter canonical tensor fields of
type (p,0) on Weil bundles were studied. We now prove that in the general case each
linear natural operator lifting p-vectors to tensors of type (g,0) on T4 is a sum of
operators obtained by permuting the indices of the tensor products of linear natural
operators lifting p-vectors to tensors of type (p,0) on T and canonical tensor fields
of type (¢ — p,0) on T4. Therefore in the general case each natural operator under
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consideration can by constructed from those described in [2] and [1] by using well
known operations on tensors. However, the proof of this fact is much more difficult
then the proofs in both the special cases and needs some new ideas.

2. BACKGROUND ON THE WEIL BUNDLES

For the convenience of the reader we first summarize without proofs some basic
information on Weil bundles. As was proved by Eck [3], Kainz and Michor [5] and
Luciano [9], every product preserving bundle functor is equivalent to a Weil bundle.
A new approach to this matter was presented by Kolaf in [6]. We give a brief sketch
of this result following the last paper. For a general theory of natural bundles and
natural operators we refer the reader to [8].

Let F' be a functor which transforms each manifold M into a locally trivial bundle
mar: FM — M and each smooth map f: M — N into a smooth map Ff: FM —
FN such that my o F'f = fomy. We call F' a bundle functor if for every integer
n > 0 and every embedding f: M — N between n-dimensional manifolds F'f is an
embedding and Ff(FM) = mx~!(f(M)). Hence we can identify FU with 7y, (U)
for each open subset U of a manifold M. Such F is said to be product preserving if
for all manifolds M and N the map (Fpu, Fpn): F(M x N) = FM x FN, where
pv: M x N — M and py: M x N — N are the projections, is a diffeomorphism.
Hence we can identify F'(M x N) with FM x FN.

A Weil algebra is, by definition, a finite-dimensional associative and commutative
R-algebra A with unit which has an ideal N such that A/N is one-dimensional and
N7+ =0 for an integer 7 > 0. The basic examples are the algebras D}, of r-jets at 0
of smooth functions R* — R. For an arbitrary Weil algebra A there is a surjective
algebra homomorphism D}, — A for some integers r > 0 and k > 0.

Let F' be a product preserving bundle functor. Put A = F'R. Applying F' to the
addition and multiplication R x R — R in the field R as well as to multiplying R — R
by any real number in R we obtain an addition and multiplication A x A — A in
A as well as multiplying A — A by this real number in A, so A is an R-algebra. In
fact, it is a Weil algebra.

Conversely, let A be a Weil algebra and let p: D}, — A be a surjective algebra ho-
momorphism. We say that two smooth maps ~,5: R¥ — M, where M is a manifold,
determine the same A-jet if p(j5 (1 o)) = p(j5 (1 0 §)) for every smooth function
: M — R. We will denote by j4v the A-jet of a smooth map v: R¥ — M and by
TAM the set of A-jets of all such maps. Since every chart p: U — R™ on M induces
the chart TAU 3 j4y — (p(j5(p' 0 7)), ..., p(35(¢™ 0 7)) € A" on TAM, TAM is
a manifold, and so a bundle over M with the projection T4M > j4y — v(0) € M. If
f: M — N is a smooth map between manifolds then we define T4 f: TAM — TAN
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by T4f(54) = j4(f o y). The functor T is called the Weil bundle induced by A.
It is a product preserving bundle functor. Though the construction of T4 depends
on the choice of p, T is unique up to an equivalence.

Therefore we have a Weil algebra for every product preserving bundle functor and
a product preserving bundle functor for every Weil algebra. These constructions
are inverse to each other if isomorphic algebras and equivalent functors are identi-
fied. Thus we have a one-to-one correspondence between product preserving bundle
functors and Weil algebras.

It is worth pointing out that the Weil bundle induced by the simplest nontrivial
Weil algebra D! is nothing but the usual tangent bundle functor T'.

3. CONSTRUCTION OF SOME NATURAL OPERATORS

We now turn to the main subject of the paper.

Fix a Weil algebra A, as well as integers n > 0, p > 0 and ¢ > 0.

Let us denote by V" (M), where M is a smooth manifold and r > 0 is an integer,
the vector space of all tensor fields of type (r,0) on M, and by SV" (M) the subspace
of V"(M) consisting of all skew-symmetric tensor fields.

Definition 3.1. A natural operator lifting p-vectors to tensors of type (g,0)
on T4 is a system of maps Lys: SVP(M) — VI(TAM) indexed by n-dimensional
manifolds and satisfying for all such manifolds M, N, every embedding f: M — N
and all t € SVP(M) and u € SVP(N) the implication

(3.1) NTfot=uof= QQTT"foLunl(t)=Ly(u)oTf.

Of course, such a natural operator L is called linear if the map L), is linear for each
n-dimensional manifold M.

For every integer r > 0, every k € {1,...,7} and every a € A we have the linear
map Z¥: ®" A — ®" A such that

ZFb1®...@b)=b1®...@by_1 Daby @by @ ... Db,
for all by,...,b, € A.
Suppose that ¢ > p. Let ED]J(A) denote the vector space of all (¢ —p)-linear maps

D: Ax...x A— ®?A such that

(3.2) ZioD=2ZioD
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for alli,5 € {1,...,p} and every a € A, and

(3.3) D(Cptiy--vsCh1s @by Chits-yCq) = ZE(D(Cpi1s- -y Cho1, by Chyts- -5 Cq))

+Z§(D(Cp+l7" +5Ck—1, 0, Ck41, - - -ch))

for every k € {p+1,...,q} and all a,b,cpt1,...,Ch—1,Clit1,--.,¢q € A.
If p > 1, then elements of the vector space ED(A) may be multiplied by elements
of the algebra A. Indeed, it suffices to take any k € {1,...p} and put

aD=Z"oD

for every a € A and every D € EDJ(A). By (3.2), it is immaterial which & €
{1,...,p} we choose. In addition, we see that ED}(A) is an A-module.

Let ey, ..., e, denote the standard basis of the vector space R".

Proposition 3.1. If p > 1 and q > p, then for every D € ED](A) there is
a unique natural operator D lifting p-vectors to tensors of type (q,0) on T# such
that

n n
(3.4) Dylt Z Z (T4 (X) - D) (X', X" ®e;, ®@... ¢,

for every open subset U of R", every t € SVP(U) and every X € TAU.

The right hand side of the above equality needs some explanation. Since T4R = A
and t1r: U — R, we have T4t (X) € A for all iy,...,4, € {1,...,n}. More-
over, since TAU is an open subset of A™, the tangent bundle TTAU can be identified

with TAU x A™. But the isomorphism A" > X + Zn: X'®e; € A® R™ enables us
to identify A™ with A ® R", and consequently ®)? zzlnlwith RIA2 RTR™.

In order to prove the proposition, we first show a lemma.

Suppose now that ¢ > p. Let E,(A) denote the subspace of the vector space @” A
consisting of the tensors V' which for all 4,j € {1,...,p} and every a € A satisfy the
condition Z! (V) = ZI(V), and let D,_,(A) denote the vector space of all (¢ — p)-
linear maps F': Ax...x A — @7 " Asuch that F(cpi1,...,Ch—1,ab,Chi1,...,Cq) =
ZEP(F(Cprts- -y Chio1y by Chy - - - ,cq))—i-Zf*p(F(cpH, ey Ch—1, Gy Chg1, - - -, Cq)) fOr
all a,b,cpq1, ..., Ch—1,Cht1,...,¢q € Aand every k € {p+1,...,q}.
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Lemma 3.1. Let I: E,;(A)®Dy—p(A) — EDJ(A) be the unique linear map such
that for every V € E,(A), every F € Dq_,(A) and all apt1,...,a0 € A

IV@F)(apt1,...,0q) =V Q F(apt1,--.,aq).

Then I is an isomorphism of vector spaces.

Proof. Fix a D € EDJ(A). Let vi,...,v, be a basis of the vector space A.
There are uniquely determined Fj, ; : Ax ... x A — Q* " A, where iy,...,i, €
{1,...,m}, such that for all ap41,...,a, € A

m m
D(ap+1,...,aq): E E vil®...®vip®Fi1,,,ip(ap+1,...,aq).
=1 =1

From the uniqueness it follows that Fj . ;, € Dy, (A) for all iy, ... i, € {1,...,m}.
Let Fy,...,F4 be a basis of the vector space D,_,(A). By the above, there are
uniquely determined Vi,...,V; € Q" A such that for all api1,...,a, € A

d
D(aps1,- .- aq) = Vi ® Fj(apia, ..., aq).

=1

From the uniqueness it follows that Vi,...,Vy € E,(A). Therefore

d
D= I<ZV} ®Fj)
j=1

and [ is a surjection. It is also an injection, because of the uniqueness of V7, ..., Vy,
and the lemma follows. O

Proof of Proposition 3.1.  Fix a D € EDJ(A). From what has already been
d

proved, we have D = I( YVi® Fj), where F1,..., F; is a basis of the vector space
j=1

Dy p(A) and V4,..., V4 € E,(A) are uniquely determined. For every n-dimensional
manifold M and every t € SVP(M) we put

Du(t) =Y V;(t)®F;,

where V; with j € {1,...,d} is the linear natural operator lifting p-vectors to tensors
of type (p,0) on T# induced by V; in the manner described in [2], and where F;
with j € {1,...,d} is the canonical tensor of type (¢ — p,0) on T# induced by F} in
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the manner described in [1]. It is known that for every j € {1,...,d}, every open
subset U of R", every t € SVP(U) and every X € TAU

Vo (t)(X) = zn: e i (T (X) - V) @eiy @ ... ® eqy,

=1 =1

n n
Fiu(X)= Z Z Fj (X', X" ®e,, ®...0¢,.

ipt1=1 ig=1

Using these formulas it is easily seen that D satisfies (3.4). Since we may take as f
in (3.1) the inverse of any chart on an n-dimensional manifold, it is obvious that D
satisfying (3.4) is unique. This proves the proposition. O

4. THE MAIN RESULT

Let € denote the group of all permutations of the set {1,...,q} and let w € Q.
For every manifold M we define wys to be the linear map V(M) — V(M) such
that

WM(‘G@@%):Vw(l)@@Vw(q)

for all Vi,...,V, € VY(M). Of course, if L is a linear natural operator lifting p-
vectors to tensors of type (g,0) on T, then so is the system of maps wpay o Ly
indexed by n-dimensional manifolds. We will denote it by w o L.

For all ky,...,k, € {1,...,q} such that k; < ... <k, we define wy, .., to be the
permutation of the set {1,...,q} satisfying wg,..x, (1) = k1, ..., Wi, ..k, (p) = kp and
Why.oky (1) < Why.ok, (7) for all i, j € {p+1,...,q} such that i < j.

We can now formulate our main result.

Theorem 4.1. Suppose that p > 1, n > p and n > q. Then for every linear
natural operator L lifting p-vectors to tensors of type (q,0) on T there are uniquely
determined Dy, .k, € EDJ(A), where ky,...,k, € {1,...,q} and k1 < ... <k, such
that

—1 7
L= Z wkl...kp ODkl...kp-

1<k <...<kp<q
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5. PROOF OF THE MAIN RESULT

The remainder of the paper will be devoted to the proof of this theorem. Through-
out the proof, L denotes a linear natural operator lifting p-vectors to tensors of type
(q,0) on T4,

Our proof starts with several lemmas.

Let n > p and let e be the p-vector on R™ given by the formula

P
e: R"sz—e1AN...Aep € AR,
where, as usual, eq,..., e, stands for the standard basis of the vector space R™.

Lemma 5.1. Suppose that p > 1 and n > p. If Lgn(e) =0, then L = 0.

Proof. The proof of this lemma is similar to that of the analogous lemma in [2].
Let a1 > 0,...,a, > 0 be integers. We first prove that for every i € {0,...,p—1}

we have Lgn(€q,i)|rapn = 0, where eq;: R" 3z — (o (2)%er AL Aep €

p
A\ R™. The proof is by induction on . Let ¢ > 1 and let g: (—¢,¢) — R, where & > 0,
be an embedding such that g(0) = 0 and g’ = 1+ g*. If Lgn(€q,i—1)|gag» = 0, then
(3.1) with

f: R7Ex (—g,e) x R sz e (2, ... 2"t g(ah), 2™, .. 2™) € R™,

t=-eqi—1 andu = eqi—1+e€q,; yields Lgn (eaﬂ-)|TOA[Rn = 0, as desired. Next, consider

p
ea: R" > x s (1) .. (2™)% e A... Aep, € AR™. Let g: (—&,6)" PT! — R be
such that g(0) = 0, (0g/dzP)(aP,...,a") =1+ g(aP,...,a")% (gPTH)w+1  (g7)%n
for every (zP,...,2") € (—¢,e)" P*! and that

fr R (=g, e) P sz (2, 2Pt g(a?, ..., 2"), 2Pt .. 2") € R

is an embedding. Then (3.1) with the above f, t = e p—1 and u = €4 p—1 + €4 leads
to the equality Lg» (ea)|T64[Rn = 0. Finally, for all 41,...,4, € {1,...,n} such that

P
i1 < ... <1, we consider ey i, i, R" > x> (xh)y . (a™)%e; A Nei, € AR™.
Let 7 be the permutation of the set {1,...,n} such that 7(1) =41,...,7(p) =i, and
let us denote 1 = (1), ..., Bn = Qr(n). Then (3.1) with

iR~ (:cT_l(l), e ,xT_l(")) € R"™,

t=egand u = eqy, .., leads to the equality Lg» (ea,il,...,ip)|T(;‘Rn =0.

517



P
Obviously, for every smooth ¢t: R™ — A R™ and every integer r > 0 there are poly-

nomials u;,. ;, € R[z',...,2"] for all i1,...,i, € {1,...,n} such that i; < ... <1,

with the property that jot = jou, where u = > Ujy..i,€i N oo Aeg,. But
1<i1 <. <ip<n

from what has already been proved, we have the equality Lgn (u)|pagn = 0. Therefore

P
the Peetre theorem applied to the operator which maps each smooth ¢: R™ — A R”
to R™ 3 x +— Lpa(t)(z,y) € @7 A", where y is any point of the standard fibre of the

p
bundle TAR™ — R™, implies Lg» (t)|zagpn = 0 for every smooth ¢: R™ — A R™.

P

Now (3.1) with f: R™ 3 2 — x—c € R™, where ¢ € R", any smooth ¢: R™ — A R"
and u = t o f~! shows that Lg» (t)|zagn = 0 for every ¢ € R", which proves the
lemma. O

If L is a linear natural operator lifting p-vectors to tensors of type (¢,0) on T4,
then there are unique smooth functions B~ : A" — @7 A, where i1,...,i, €
{1,...,n}, such that

n n
Lgn (e Z Z X)®e, ®...Q¢€,

for every X € A™. We will call them the coordinates of L. On account of Lemma 5.1,
L is fully determined by its coordinates, provided p > 1 and n > p, which we assume
from now on.

Note that using the coordinates of L we may rewrite the left hand side of the
consequent of (3.1) in a more convenient form. Namely, if U is an open subset of R”
and f: U — R™ is an embedding, then

for every X € TAU.

Lemma 5.2. If {i1,...,i,} does not contain {1,...,p}, then B = 0. Oth-
erwise there is a unique (q — p)-linear map C1%a: A x ... x A — @ A such that
for every X € A™ we have

(5.1) Bireia(X) = Cevin (X9, XFir),

where the sequence (j1, . . ., jq—p) is determined by the conditions j; < ... < jq—p and
(1,00 J15 -5 Jg—p) = (io(1), - - - io(q)) for a permutation o of the set {1,...,q}.
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Proof. Since L is linear, from (3.1) with f: R" > z — (A\z!,..., \,2") € R",
where A1,..., A\, € R\ {0}, t =€ and u = A1 ... A\pe we have

(5.2) Aiy - Ay B (X)) = AL B (0 X L A XT)

for all 41,...,i4 € {1,...,n} and every X € A™. By continuity, (5.2) is also true for
all A\1,..., A, € R. The homogeneous function theorem now gives the assertion of
the lemma, and the proof is complete. ([

Note that if ¢ < p, then Lemmas 5.1 and 5.2 yield L = 0, which completes the
proof of the theorem in this case. Hence from now on we make the assumption ¢ > p.
We will also need the assumption n > ¢ throughout the rest of the proof.

Let w € . The coordinates of w o L will be denoted by Bi,l"'iq, where i1,...,i4 €
{1,...,n}. We also define w4 to be the linear map @? 4 — @7 A such that

(JJA(al ®...®aq) = Qu(1) @ ... B ay(g)

for all a1,...,ay € A. It is a simple matter to observe that
(53) BZ}’Lq — (UA o Biwfl(l)"'iwfl(q)

for all 41,...,i, € {1,...,n}.

Lemma 5.3. Suppose B'% = 0 for all i1,... ,ig € {1,...,n} such that for
every k € {1,...,p} there is one and only onel € {1,...,q} for which i; = k. Then
L=0.

Proof. Let g1,...,94 € {1,...,n} be such that there exist integers r1,...,7p
which satisfy the following conditions:

T17"'7Tp>15 r1+"'+7‘p<qa grit..4rs_1+k = S

forall s € {1,...,p}, k€ {1,...,rs}, and p < gr .. 4,41 < ... < gq. Since n > g,
we can choose hi,...,hy € {1,...,n} with the properties that h, 4 4., = s for
every s € {1,...,p}, hiy # hyifeither k, I <ri+...+rp, k#Flor k< +...+1p,
Il>r+...47, and hy, = g if m > r1 + ...+ 1r,. We define the embedding
f: R™ — R™ by the formula

Ts

ST gtttk it s e {1,...,p},
P =4 i

x® ifse{p+1,...,n}.
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Consider the consequent of (3.1) with the above f, t = e and u = e. Comparing the
parts of both sides which contain e;, ® ... ® ey, and are linear with respect to each
variable X"i++7s-1+% with s € {1,...,p}, k€ {1,...,7s — 1} we obtain for every
XeAr

E Bh¢(1)~~~h¢(q)(X): E E C'91~~~9<1(thl<1>7,,,,thl(rl—l)v,,,7

PpeD P1€Y YpEYy

thp(r1+_..+rp71+l)7 o

thp('rl#»,.,#»'r'pfl) ’ Xh'r'1+.,.+7'p+1’ . th),

where @ is the group of all permutations ¢ of the set {1,..., ¢} satisfying the condi-

tions p{r1+...+7rs_1+1,. ..+ Frs C{ri+ e+ 1o 4 s}

for every s € {1,...,p}and ¢|{r1 +...+rp,+1,...,q¢} =id( 1. 4r,41,... 4}, Whereas

U, for every s € {1,...,p} is the group of all permutations of {ry + ... +rs_1 +

1,...,7m1+...+7s — 1}. Combining this formula with (5.1) yields for every Y € A™
1

(54 B = (ri=1...(rp = 1) Z Bhea-hot (X)
p s

where X is an element of the set A" such that X/rit-+rec1th — VS for all s €
{1,...,p}, ke {1,...,rs—1},and X" = Y for every m € {ri+...+rp,+1,...,q}.
Let now i1,...,%q € {1,...,n} be such that {1,...,p} C {i1,...,44}. Then there

are gi,...,9q¢ € {1,...,n} such that there exist integers r1,...,r, which satisfy the
following conditions: r1,...,7p = 1, r1 + ... +7p < ¢, Gri4...4r._1+k = s for all
se{l,....p},ke{l,...,rs},and p < griq.. 4rpt1 < ... < g, as well as an w € O

such that g = i,y for every k € {1,...,q}. Applying (5.4) to w o L instead of L
and using (5.3) we obtain for every Y € A"

Bil...’iq (Y) — le(Bg)l...gq (Y))
1 -1 h ...h
- w (de)u) () (X))
(ri— D). (rp —1)! Z A
ped
= ! h -1 ...h 1
(=D (rp — 1) gE(:pB dlwmtan Mo @) (X)),
where h1,. .., hg and X are chosen for g1, ..., g, and Y in the same manner as in (5.4).

But for every ¢ € ® and every k € {1...,p} there is one and only one [ € {1,...,q}
for which hg,-1(;)) = k, hence Bhsw-tan-hsw—1@ = 0. Consequently B = ()
for all 41,...,44 € {1,...,n} such that {1,...,p} C {i1,...,75}. This means that
L = 0 on account of Lemmas 5.1 and 5.2, and the proof is complete. O
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Lemma 5.4. If B*~ W« '@ =0 for every w € , then L = 0.

Proof. We first show that if i1,...,4i, € {1,...,n} are such that i, = k for k <p
and i, > p for k > p, then

(5.5) Bila(X) = My X et X )

for every X € A™. The proof of (5.5) is by induction on the number N (ip11,...,44) of
the elements of the set {ipt1,...,9.}. Wefix g1,...,94 € {1,...,n} such that g, = k
for k < p and gy > p for k > p, and suppose (5.5) holds whenever N (ipy1,...,74) >
N(gpt+1,---,9q)- Let R C {p+1,...,q} be such that for each k € {gpt+1,...,9¢}
there is one and only one [ € R such that k = g;. Next, let hy,...,h, € {1,...,n} be
such that h,, = g, for every m € {1,...,p} UR and hy # h; for all k,l € {1,...,n}
such that k # [. Put

g {hm} itme{l,...,p)URU{q+1,...,n},
" {gmihm} ifme{p+1,....q}\R,

and define

b [R"Bx»—)(Z ., Z a:s") € R".

s1€S1 5n€Sn

Consider the consequent of (3.1) with this f, ¢ = e and u = e. Comparing the

parts of both sides which contain e; ® ... ® e, we obtain > ... Y B%%(X) =
s1E€S51 5q€Sg
Bl“'q( DD, G XS") for every X € A™. This may be rewritten as
$1€S51 $n€Sn
(5.6) > ... Y BUmwmmese(X)= NN CM(X LX),
Sp+1€Sp+1 54€8, Sp+1€Sp+1 54€8,

But if sp11 € Spt1,...,8¢ € S, are such that there exists r € {p+1,...,¢} \ R
with the property that s, = h,., then Bl-Psr+1-8a(X) = Cl-q(Xsr+1 .. X59)
on account of our assumption, because we have N(spt1,...,5¢) > N(gp+1;---,9q)-
Subtracting all terms with such indices sp41,. .., sq from each side of (5.6) gives the
equality B9-94(X) = C1+9(X9+1 ... X9), which completes the proof of (5.5).

Let now i1,...,iq € {1,...,n} be such that for every k € {1,...,p} there is one
and only one [ € {1,...,q} for which ¢; = k. There are ¢1,...,94 € {1,...,n} such
that g, = k for k < p and g, > p for k > p, as well as w € Q such that g = i) for
every k € {1,...,q}. Applying (5.5) to w o L instead of L and using (5.3) we obtain
for every X € A"

Bitin(X) = wy (BO90(X)) = wy (CL-9(X01, L X)) = w3 (BL-9(Y))
_ Bw—l(l)...w‘l(q)(y)7
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where Y is an element of the set A” such that YP+! = X9+ . Y9 = X9 This
means that L = 0 on account of Lemma 5.3 and the proof is complete. 0

-1 —1
Lemma 5.5. If Bk M9 (D — ) for o] ki,...,kp € {1,...,q} such that
ki1 <...<kp, then L =0.

Proof. Let w be an arbitrary permutation of the set {1,...,¢}. Then there are
ki,...,k, € {1,...,q} such that k1 < ... <k, and the permutations ¢ and 7 of the
sets {1,...,p} and {p + 1,...,q}, respectively, such that w = wg,..x, o (0 U 7)1
where

o(m) ifme{l,..., p},
(cUT)(m) = o) : { }
T(m) ifme{p+1,...,q}.
Put
R~ (x”(l), o ztWP) gt T(@) gt ,a") € R™.

Consider the consequent of (3.1) with this f, ¢t = e and u = sgnoe. Comparing the

parts of both sides which contain €l (1) Q... ol (g WE obtain
qekp 1o kp

Be tW)w () (X) = sgn o Bk Wi, (@) (TAf)(X))
—1 —1
for every X € A™. But Bkr-ekp Doy (O 0, so using Lemma 5.4 completes the

proof. O
Proof of Theorem4.1. For every D € ED}(A) and every X € A™ we have
D (6)(X)
n n ) )
= Z Z Z sgnd)D(X“J“,...,X“)®e¢(1) Q... Q€epp) V€, @...Qe,
PeD ip+1:1 iqzl

where @ is the group of permutations of {1,...,p}. From this formula we see that
for all k1,...,kp,l1,...,0p, €{1,...,q} such that ky < ... <k, and [ < ... <, the

. 71 -~
coordinate of w oDate - .Re -
k...kyp wl,l%..lp(l) ® ® wl,l%..lp(q

) equals either
(w;}_lq)A(D(Xp“,...,Xq)) if (k1. k) = (I, 1)

or 0 if (k1,...,kp) # (l1,...,1p). It follows immediately that if Dy, , € EDJ(A)
for all k1,...,k, € {1,...,q} such that k4 < ... < kp, then the coordinate of

—1 -_— .
> Wy .ok © Dy, ..k, at e, 1)@ ®e, -1 (s equal to
1<k <...<kp<q l1-lp 11...lp

(Wl_l.l..lq)A(Dll...lp (XPTL LX),
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For all l1,...,1, € {1,...,q} such that Iy < ... <, put

-1 -1
Dl1...lp = (wh...lp)A © szlmlp(l)mw,'l'”lp((I)v
w b (Wewt (q) - . wt L Wewt (g)
where C™'1-tp 1% s defined by the coordinate B '1-i» e of I as
in (5.1).
By the above, the proof will be completed as soon as we can show that

-1 -1
(5.7) (Wiy.o1,)a 0 Ctp D0, (0 EDE ()

for all I,...,l, € {1,...,q} such that I; < ... <l,. Indeed, if we apply Lemma 5.5

to L — > w,;ll___k Oﬁkl...kp instead of L in this case, we obtain the desired
1<k1<...<kp<q ?

equality L — > wk_llmk o Dy, ..k, = 0.
1<ki<...<kp<q i
Therefore it remains to prove (5.7).

Let 4,5 € {1,...,p} be such that i < j. Put
(27)?
2

I R”Bx»ﬁ(ml,...,xi*,xi—i— ,m”l,...,m")ER”.

Consider the consequent of (3.1) with this f, t = e, u = e. Comparing the parts of
both sides which contain

ot ) @B ) @ @t a1 @Bl (g
we obtain for every X € A"

Z?(-j o Cwr (Vv (@)

+ Zégj o Cwl—l(1)...w;1(z,-71)%—1(zj)w;l(ziﬂ)...w;l(zj71)%—1(zi)w;l(zjﬂ)...w;l(q) —0

where I =1; ...l,. Consider the consequent of (3.1) with

frR sz (b, . 2 2l 2t T 2t I ) € R,
t = e, u = —e. Comparing the parts of both sides which contain e -1 H®---®
ly...0p
ewa}”lp(q) we obtain

-1 -1 -1 -1 -1 -1 -1 -1
C“’zl...zp(l)"'wll...zp (l’ifl)wzl...lp(lj)wl,l...lp(liJrl)"'wl,l...lp(ljfl)wll...zp (li)“’ll...zp (lj+1)...wll___lp(q)

_C“"lil%..l,p(1)""“'171%..11,((1).
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Therefore

—1 —1 1 -
Zéé‘_ ° C‘*’Ll.,.l,,(1)"'w11,.,1p(Q) — Z?( ° C‘*’Ll,.,zp(1)""*’11%.,11,(‘1)
J J ‘

Combining the both sides of this equality with (w;,..; )a yields

bp
. —1 -1 . -1 —1
(5:8) Z%;0(wiy..a,)a0 0¥t it @ = 740 (uy, Ly, ) a0 Ot ianap (0,

. —1 -1
Since X7 in (5.8) may be any element of A, (w;,. i )a © C¥itp Dy, (@)

lp
fies (3.2).
Letnow k€ {p+1,...,¢}. Put U = {z € R": ¥ > 0} and

satis-

x
f:UBxH(xl,...,mk_l,( ,xk+1,...,m")eR”.

Consider the consequent of (3.1) with this f, ¢ = e and v = e. Comparing the parts
. . . . A
of both sides which contain ewz_l%.,zp(l) .. .®ewl_l%ul (q) We obtain for every X € T4U

p

(59) Z;lémlp(k) (Cwl_l%wlp(l)”'wl_l%ulp (q) ()(104_17 N ,Xq))

— sz_l%,.zp(l)~~~wa?.zp(q) (Xp+1 x k-1 (X*F)? X+l Xq>
e, I ey i

In the same manner, with U replaced by {x € R": z¥ < 0}, we see that (5.9) also
holds for every X € T4{x € R": 2* < 0}, and so, by continuity, for every X € A™.
Combining the both sides of (5.9) with (wi,...1,)4 yields
(510) Zlyi ((wry..q,)a(Cna D, @ (xpid ey

(X*)?

—1 —1
= (wll...lp)A (CWll”'lp(l)mw“mlp(q) (Xerlv sy inla TvXkJrla s an)) .

Now the polarization of (5.10) with respect to X* leads to the conclusion that
-1 -1
(wiy..1,)a 0 oty W91, (@ gatisfies (3.3). This completes the proof. O
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