[1] Airey, D., Mance, B.:
On the Hausdorff dimension of some sets of numbers defined through the digits of their $Q$-Cantor series expansions. J. Fractal Geom. 3 (2016), 163-186.
DOI 10.4171/JFG/33 |
MR 3501345
[3] Airey, D., Mance, B., Vandehey, J.:
Normality preserving operations for Cantor series expansions and associated fractals II. New York J. Math. (electronic only) 21 (2015), 1311-1326.
MR 3441645
[6] Cantor, G.: Über die einfachen Zahlensysteme. Zeitschrift für Mathematik und Physik 14 (1869), 121-128 German.
[8] Erdős, P., Rényi, A.:
On Cantor's series with convergent $\sum 1/q_n$. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 2 (1959), 93-109.
MR 0126414 |
Zbl 0095.26501
[11] Kuipers, L., Niederreiter, H.:
Uniform Distribution of Sequences. Pure and Applied Mathematics John Wiley & Sons, New York (1974).
MR 0419394 |
Zbl 0281.10001
[13] Mance, B.:
Construction of normal numbers with respect to the $Q$-Cantor series expansion for certain $Q$. Acta Arith. 148 (2011), 135-152.
MR 2786161 |
Zbl 1239.11082
[14] Rényi, A.:
Probabilistic methods in number theory. Proc. Int. Congr. Math. (1958), 529-539.
MR 0118707
[15] Rényi, A.:
On the distribution of the digits in Cantor's series. 7 Mat. Lapok (1956), 77-100 Hungarian. Russian, English summaries.
MR 0099968 |
Zbl 0075.03703
[17] Sierpiński, W.:
Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'{u}ne tel nombre. Bull. Soc. Math. Fr. 45 (1917), 125-153 French.
DOI 10.24033/bsmf.977 |
MR 1504764
[18] Turán, P.:
On the distribution of ``digits'' in Cantor systems. Mat. Lapok 7 (1956), 71-76 Hungarian. Russian, English summaries.
MR 0099967 |
Zbl 0075.25202
[19] Turing, A. M.:
Collected Works of A. M. Turing: Pure Mathematics. North-Holland Publishing, Amsterdam J. L. Britton (1992).
MR 1150052 |
Zbl 0751.01017