[1] Andreescu, T., Andrica, D., Cucurezeanu, I.:
An Introduction to Diophantine Equations. A Problem-Based Approach. Birkhäuser New York (2010).
MR 2723590 |
Zbl 1226.11001
[2] Aouchiche, M., Hansen, P.:
Distance spectra of graphs: a survey. Linear Algebra Appl. 458 (2014), 301-386.
MR 3231823 |
Zbl 1295.05093
[3] Balińska, K., Cvetković, D., Radosavljević, Z., Simić, S., Stevanović, D.:
A survey on integral graphs. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 13 (2002), 42-65.
MR 1992839 |
Zbl 1051.05057
[7] Harary, F., Schwenk, A. J.:
Which graphs have integral spectra?. Graphs Combinatorics, Proc. Capital Conf., Washington, 1973, Lect. Notes Math. 406 Springer, Berlin (1974), 45-51.
DOI 10.1007/BFb0066434 |
MR 0387124
[8] Ilić, A.:
Distance spectra and distance energy of integral circulant graphs. Linear Algebra Appl. 433 (2010), 1005-1014.
MR 2658651 |
Zbl 1215.05105
[9] Indulal, G., Gutman, I., Vijayakumar, A.:
On distance energy of graphs. MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472.
MR 2457864 |
Zbl 1199.05226
[13] Stevanović, D., Milošević, M., Híc, P., Pokorný, M.:
Proof of a conjecture on distance energy of complete multipartite graphs. MATCH Commun. Math. Comput. Chem. 70 (2013), 157-162.
MR 3136757 |
Zbl 1299.05233
[14] Yang, R., Wang, L.:
Distance integral complete multipartite graphs with $s=5,6$. (2015), 6 pages Preprint arXiv:1511.04983v1 [math.CO].
MR 3359263
[16] Zhou, B., Ilić, A.:
On distance spectral radius and distance energy of graphs. MATCH Commun. Math. Comput. Chem. 64 (2010), 261-280.
MR 2677587 |
Zbl 1265.05437