[2] Chen, W.:
Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatronics 9 (2004), 706-710.
DOI 10.1109/tmech.2004.839034
[3] Chen, W., Ballance, D., Gawthrop, P., O'Reilly, J.:
A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47 (2000), 932-938.
DOI 10.1109/41.857974
[4] Ding, S., Wang, J., Zheng, W.:
Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Trans. Ind. Electron. 62 (2015), 5899-5909.
DOI 10.1109/tie.2015.2448064
[5] Desai, J., Ostrowski, J., Kumar, V.:
Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Automat. Control 17 (2001), 905-908.
DOI 10.1109/70.976023
[9] Du, H., He, Y., Cheng, Y.:
Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems. Kybernetika 49 (2013), 507-523.
MR 3117911 |
Zbl 1274.93008
[11] Hardy, G., Littlewood, J., Polya, G.:
Inequalities. Cambridge University Press, Cambridge 1952.
MR 0046395 |
Zbl 0634.26008
[13] Jiang, Z., Nijmeijer, H.:
Tracking control of mobile robots: a case study in backstepping. Automatica 33 (1997), 1393-1399.
MR 1467813 |
Zbl 0882.93057
[16] Lin, Z., Francis, B., Maggiore, M.:
Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Automat. Control 50 (2005), 121-127.
DOI 10.1109/tac.2004.841121 |
MR 2110819
[17] Jadbabaie, A., Lin, J., Morse, A.:
Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003), 988-1001.
DOI 10.1109/tac.2003.812781 |
MR 1986266
[18] Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proc. IEEE Int. Conf. Rob. Autom. (1990), pp. 384-389.
[21] Murray, R.:
Recent research in cooperative control of multivehicle systems. ASME J. Dyn. Syst. Meas. Control 129 (2007), 571-583.
DOI 10.1115/1.2766721
[22] Ni, W., Wang, X., Xiong, C.:
Leader-following consensus of multiple linear systems under switching topologies: an averaging method. Kybernetika 48 (2012), 1194-1210.
MR 3052881 |
Zbl 1255.93069
[24] Ou, M., Li, S., Wang, C.:
Finite-time tracking control for a nonholonomic mobile robot based on visual servoing. Asian J. Control 16 (2014), 679-691.
DOI 10.1002/asjc.773 |
MR 3216258
[25] Ou, M., Sun, H., Li, S.:
Finite time tracking control of a nonholonomic mobile robot with external disturbances. In: Proc. 31th Chinese Control Conference, Hefei 2012, pp. 853-858.
MR 3013579 |
Zbl 1265.68291
[26] Ren, W., Beard, R.:
Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control 50 (2005), 655-661.
DOI 10.1109/tac.2005.846556 |
MR 2141568
[27] Saber, R., Murray, R.:
Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533.
DOI 10.1109/tac.2004.834113 |
MR 2086916
[29] Vicsek, T., Czirok, A., Jacob, E., Cohen, I., Schochet, O.:
Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75 (1995), 1226-1229.
DOI 10.1103/physrevlett.75.1226
[30] Wang, J., Qiu, Z., Zhang, G.:
Finite-time consensus problem for multiple non-holonomic mobile agents. Kybernetika 48 (2012),1180-1193.
MR 3052880 |
Zbl 1255.93118
[31] Wu, Y., Wang, B., Zong, G.:
Finite time tracking controller design for nonholonomic systems with extended chained form. IEEE Trans. Circuits Sys. II: Express Briefs 52 (2005), 798-802.
DOI 10.1109/TCSII.2005.852528
[32] Yang, J., Li, S., Chen, X., Li, Q.:
Disturbance rejection of ball mill grinding circuits using DOB and MPC. Powder Technol. 198 (2010), 219-228.
DOI 10.1016/j.powtec.2009.11.010