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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 6 , P AGES 1 0 4 9 – 1 0 6 7

FINITE-TIME TRACKING CONTROL
OF MULTIPLE NONHOLONOMIC MOBILE ROBOTS
WITH EXTERNAL DISTURBANCES

Meiying Ou, Shengwei Gu, Xianbing Wang and Kexiu Dong

This paper investigates finite-time tracking control problem of multiple nonholonomic mobile
robots in dynamic model with external disturbances, where a kind of finite-time disturbance
observer (FTDO) is introduced to estimate the external disturbances for each mobile robot.
First of all, the resulting tracking error dynamic is transformed into two subsystems, i. e., a
third-order subsystem and a second-order subsystem for each mobile robot. Then, the two
subsystem are discussed respectively, continuous finite-time disturbance observers and finite-
time tracking control laws are designed for each mobile robot. Rigorous proof shows that each
mobile robot can track the desired trajectory in finite time. Simulation example illustrates the
effectiveness of our method.

Keywords: finite-time tracking control, finite-time disturbance observer, external distur-
bances, nonholonomic mobile robot, dynamic model

Classification: 93A14, 93D15, 93D21

1. INTRODUCTION

Coordination control of multiple autonomous agents has received considerable attention
recently because of its challenging features and many applications in rescue mission,troop
hunting, formation control, cluster of satellites, and so on. A group of autonomous
agents can coordinate with each other via communication or sensing networks to perform
certain challenging tasks, which can not be well accomplished by a single agent. Multiple
agents have been widely used in many fields, such as cooperative control of unmanned air
vehicles, flocking of birds, schooling for underwater vehicles, distributed sensor networks,
attitude alignment for cluster of satellites, collective motion of particles, and distributed
computations [17, 21, 22, 26, 27, 29]. In the area of cooperative control of multiple
autonomous agents, consensus is an important and fundamental problem. The consensus
means that a group of dynamic agents can reach an agreement on certain quantities of
interest by implementing an appropriate control strategy or protocol on the basis of local
state information. Obviously, the consensus state and the convergence rate are crucial
for the study of consensus problem.
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In recent years, on the basis of the algebraic graph theory, many consensus-based
results have been applied to cooperative control of multi-robot systems [17, 22, 26,
27]. However, the robot system models in these papers are all linear. In practical
cooperative control applications, many robot system dynamics are nonlinear and have
nonholonomic constraints. Therefore, it is necessary to discuss cooperative control of
multiple nonholonomic mobile robots. Cooperative control of wheeled mobile robots
has been studied in [5, 14, 16]. For cooperative control of multiple nonholonomic mobile
robots in kinematic model, consensus-based control laws were proposed in [7]. However,
in practice, most of nonholonomic mechanical systems are of dynamic model which
require generalized forces as their inputs. Hence, the control inputs are generalized
velocities which are designed based on the kinematic models can not be directly used to
control the practical dynamic systems. For this reason, to study the cooperative control
of multiple nonholonomic mobile robots with dynamic systems is not only theoretically
challenging but also practically imperative. [6, 8] investigated the cooperative control
of multiple nonholonomic systems with dynamics and uncertainty. In both papers, the
backstepping design schemes are employed to solve the cooperative control problem.

In almost all engineering control systems, the presence of disturbances, model un-
certainties and nonlinear model parts is inevitable. If no adequate control method is
used to deal with disturbances, the existence of disturbances may influence system per-
formance, cause oscillation, and lead to instability. Thus, in recent years, the problem
of controlling uncertain dynamical systems subject to external disturbances has been
a interesting topic. Various robust control methods have been proposed, e. g., internal
model control, sliding mode control and H∞ control, these methods are well known for
their performance and robustness. However, these conventional feedback control meth-
ods usually can not react directly and promptly to reject these disturbances. This may
result in a degradation of system performance when meeting severe disturbances.

Disturbance-observer-based control (DOBC) approach is from practice and depends
on the idea of feed-forward compensation. That is, the controller design is the composite
of two parts. On the one hand, observer or filter can be designed to estimate disturbances
based on the outputs or states. Thus, the estimations are to reject the disturbances.
On the other hand, stabilizer for nominal system can be designed. Recently DOBC
approach as a robust control approach has widely found its applications in mechanical
and electrical, dynamics and structure control areas [2, 3, 4, 10, 32]. A characteristic
of DOBC is having simple structure, combining with different control laws according to
different desire of control performance and very easily setting on line and engineering
realization.

Finite-time control method is another an efficient feedback control scheme to improve
disturbance rejection performance. Apart from this advantage, finite-time control system
has other good point: faster convergence, better robustness [1, 9, 15, 24, 33, 30]. For
the tracking control problem of nonholonomic mobile robot systems, some finite-time
control laws have been proposed [12, 23, 25, 31]. The authors of [31] proposed finite-
time tracking controller for the nonholonomic systems with extended chained form,
where the relay switching technique and the terminal sliding mode control scheme with
finite time convergence were used to design the controller. In [23], finite-time tracking
control problem of multiple nonholonomic wheeled mobile robots in dynamic model
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was investigated, and finite-time tracking control laws were designed for each mobile
robot. The authors of [12] discussed finite-time formation control problem for a group of
nonholonomic mobile robots, where the desired formation trajectory was represented by
a virtual dynamic leader, finite-time observer was proposed for each follower to estimate
the leader’s states and finite-time tracking control law was designed for each mobile
robot. However, all these above papers don’t consider external disturbances in robot
system models. The authors of [25] studied finite-time tracking control problem of
a nonholonomic wheeled mobile robot in dynamic model with external disturbances,
finite-time disturbance observers was introduced to estimate the external disturbances
and finite-time tracking control laws were proposed for the mobile robot . However, the
paper [25] only considered single mobile robot system model.

This paper will discuss finite-time tracking control problem of multiple nonholonomic
mobile robots in dynamic model with external disturbances. On one hand, finite-time
disturbance observers are derived for each mobile robot to estimate the external distur-
bances. On the other hand, continuous finite-time tracking control laws are proposed
such that the states of each mobile robot converges to a desired value, in which the
estimated values are used as a feed-forward disturbance compensation part. In the first
stage, the unified tracking error system consists of two subsystems for the mobile robot is
introduced. In the second stage, the two subsystems are discussed respectively, continu-
ous finite-time disturbance observers and finite-time tracking control laws are proposed
for each mobile robot. The second stage is divided into two subproblems, each with
its own design objectives. The first subproblem is that finite-time disturbance observers
will be designed for each mobile robot to estimate the external disturbances. The second
subproblem is to design finite-time tracking control laws for each robot, where finite-time
disturbance observers are introduced to compensate for the influence of the disturbances
using proper feedback. It is shown that the proposed finite-time tracking control laws
make the states of each mobile robot converge to the desired value.

This paper is organized as follows. In Section 2, related preliminary results and the
problem formulation are first presented. The main results are presented in Section 3.
Section 4 gives numerical simulations. Some conclusions are given in Section 5.

2. PRELIMINARIES

Notations. For convenience, in the sequel, set

sigα(y) = |y|αsgn(y), α > 0, (1)

where sgn(·) denotes the standard signum function.
It can be verified that

d
dy
|y|1+α = (1 + α)sigα(y) and

d
dy

sig1+α(y) = (1 + α)|y|α. (2)

2.1. Related lemma

Lemma 2.1. (Hardy, Littlewood and Polya [11]) For xi ∈ R, i = 1, 2, . . . , n, 0 < p ≤ 1
is a real number, then the following inequality holds:

(|x1|+ · · ·+ |xn|)p ≤ |x1|p + · · ·+ |xn|p. (3)
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2.2. Graph theory

This paper considers n noholonomic mobile robots. If we consider each robot as a node,
the communication between robots can be described by a directed graph G = (V, E , A),
where V = {1, 2, . . . , n} is a node set, E ⊆ V × V is an edge set with element (i, j) that
describes the communication from node i to node j. The node indexes belong to a finite
index set Γ = {1, 2, . . . , n}. If the state of robot i is available to robot j, there will be
an edge (i, j) ∈ E , and we say robot i is a neighbor of robot j. The set of neighbors
of robot i is denoted by Ni = {j ∈ V : (i, j) ∈ E}. A directed path is a sequence of
ordered edges of the form (i1, i2),(i3, i4),. . ., where (ik, ik+1) ∈ E in a directed graph.
The weighted adjacency matrix is defined as A = [aij ], the element aij associated with
the arc of the digraph is positive, i. e., aij > 0 ⇔ (i, j) ∈ E . Moreover, it is usually
assumed that aii = 0 for all i ∈ V . A diagonal matrix D = diag{d1, d2, . . . , dn} ∈ Rn×n
is a degree matrix of G, whose diagonal elements di =

∑
j∈Ni

aij for i = 1, 2, . . . , n.
Then the Laplacian of the weighted digraph G is defined as L = D −A ∈ Rn×n.

In contrast to a directed graph, the pairs of nodes in an undirected graph are un-
ordered, where the edge (i, j) denotes that robot i and j can obtain information from
each other. An undirected graph is connected if there is an undirected path between
every pair of distinct nodes. In this paper, we assume that the graph G is undirected.

2.3. Problem formulation

Consider a group of n nonholonomic mobile robots indexed with 1, 2, . . . , n, which are
moving on a plane. It is assumed that each member of the group has the same mechan-
ical structure and each mobile robot has two-degrees-of-freedom. A simplified dynamic
model of each mobile robot is give by [13]

ẋi = vi cos θi, (4a)
ẏi = vi sin θi, (4b)
θ̇i = ωi, (4c)
v̇i = u1i + d1i, (4d)
ω̇i = u2i + d2i, i ∈ Γ. (4e)

The problem we consider here is the tracking control problem. The reference trajectory
T of the group of robots is described by the following equations:

ẋr = vr cos θr, (5a)
ẏr = vr sin θr, (5b)
θ̇r = ωr. (5c)

The definitions of variables in (4) and (5) are given in the following Table 1. In this
paper, the communication topology among the group of nonholonomic mobile robots is
denoted by the graph G and satisfies the following assumption.

Assumption 2.2. The communication topology graph G is undirected and connected.
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xi, yi Cartesian coordinates of the center of mass of the robot i

θi Angle between the heading direction of the ith robot and the xi axis

vi Translational velocity of the ith robot

ωi Angular velocity of the ith robot

u1i, u2i Torques of robot i

d1i, d2i Disturbances of robot i

xr, yr Cartesian coordinates of the center of mass of the reference robot

θr Angle between the heading direction of the reference robot and the xr axis

vr Reference translational velocity

ωr Desired angular velocity

Tab. 1.

2.4. Error system

In this section, let us make some transformation for systems (4) – (5), and obtain the
tracking error system. Firstly, we have the following assumptions which will be used in
this paper.

Assumption 2.3. Suppose ωr, ω̇r, ω̈r are bounded with 0 < ωmin
r ≤ |ωr(t)| ≤ ωmax

r ,
|ω̇r(t)| < |ωmax

1 | and |ω̈r(t)| < |ωmax
2 | for each t ≥ t0 ≥ 0, where ωmin

r , ωmax
r , ωmax

1 and
ωmax

2 are appropriate constants.

Assumption 2.4. Suppose vr and v̇r are bounded with |vr(t)| ≤ vmax
r and |v̇r(t)| ≤

vmax
1 for each t ≥ t0 ≥ 0, where vmax

r and vmax
1 are appropriate constants.

Assumption 2.5. It is assumed that the disturbances dji (j = 1, 2, i ∈ Γ) are unknown,
time-varying but with bounded variation. That is

|ḋ1i| ≤ δ1i, |ḋ2i| ≤ δ2i, ∀t ≥ 0, i ∈ Γ, (6)

where δ1i and δ2i are two known positive constants for robot i.

For simplicity, we convert the coordinates representation to the Cartesian coordinates
fixed on each member of the group where the following global transformation is used
[18]:  xie

yie
θie

 =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

  xr − xi
yr − yi
θr − θi

 , i ∈ Γ, (7)
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which implies that

ẋie = ωiyie − vi + vr cos θie, (8a)
ẏie = −ωixie + vr sin θie, (8b)
θ̇ie = ωr − ωi, (8c)
v̇i = u1i + d1i, (8d)
ω̇i = u2i + d2i. (8e)

If we denote ωi = ωi − ωr + ωr, ω̄i = ωr − ωi, (8) can be rephrased as follows

ẋie = ωryie − vi + vr − ω̄iyie + vr(cos θie − 1), (9a)
ẏie = −ωrxie + ω̄ixie + vr sin θie, (9b)
θ̇ie = ω̄i, (9c)
v̇i = u1i + d1i, (9d)
˙̄ωi = ω̇r − u2i − d2i. (9e)

Consider a state transformation defined by

X1i =

 x1i

x2i

x3i

 =

 yie
−ωrxie

−ω2
ryie + ωr(vi − vr) + ω̇r

x2i

ωr

 , X2i =
(
x4i

x5i

)
=
(
θie
ω̄i

)
.

(10)
Then, the derivatives of X1i and X2i can be written as

Ẋ1i = f1(X1i, ū1i) +H1u1i +H1d1i + g(X1i, X2i), (11a)

Ẋ2i = f2(X2i) +H2u2i +H2d2i, i ∈ Γ, (11b)

where

ū1i = −ωrω̇rx1i +
( ω̈r
ωr
− ω2

r −
2ω̇2

r

ω2
r

)
x2i +

2ω̇r
ωr

x3i − ωrv̇r, (12)

f1(X1i, ū1i) =

 x2i

x3i

ū1i

 , f2(X2i) =
(
x5i

ω̇r

)
, (13a)

H1 =

 0
0
ωr

 , H2 =
(

0
−1

)
, (13b)

g(X1i, X2i) =

 g11

g21

g31


=

 − 1
ωr
x2ix5i + vr sinx4i

x1ix5iωr − ωrvr(cosx4i − 1)
x2ix5iωr − ω2

rvr sinx4i + ω̇rx1ix5i − ω̇rvr(cosx4i − 1)

 . (13c)
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Thus, the tracking error model (8) is transformed into two subsystems, i. e., third-order
subsystem (11a) and second-order subsystem (11b).

Our aim here is to design appropriate control laws u1i and u2i such that system (4)
can track the reference system (5) in finite time, i. e., the error system (8) is finite-time
stable.

Variables xji (j = 1, 2, 3, 4, 5, i ∈ Γ) are unified tracking errors between each robot
and the desired trajectory. By considering the relation between systems (7) and (10),
we can see that xji = 0 (j = 1, 2, 3, 4, 5, i ∈ Γ) implies that xi = xr, yi = yr, vi = vr
and θi = θr, ωi = ωr. Therefore, our idea in this paper is to prove that states xji (j =
1, 2, 3, 4, 5, i ∈ Γ) can converge to zero in finite time. In the following part, we will give
two steps to design controllers u1i and u2i . In the first step, we design u2i such that
x4i and x5i(i ∈ Γ)) are forced to converge to zero in finite time. In the second step, we
design u1i such that x1i, x2i and x3i(i ∈ Γ) are driven to converge to zero in finite time.

Remark 2.6. The authors of [23] discussed finite-time tracking control problem of sys-
tem (4) without external disturbances, and finite-time control laws were designed as
follows

u1i = − k3

ωr

(
x

p
2−p

3i + k
p

2−p

2

(
xp2i + kp1

∑
j∈Ni

aij(x1i − x1j) + kp1x1i

)) 3
p−2

+ ω̇rx1i

−(
ω̈r
ω2
r

− ωr − 2ω̇2
r

ω3
r

)x2i − 2ω̇r
ω2
r

x3i + v̇r (14a)

u2i = ω̇r + k4sigα1x5i + k5 sigα2x4i +
n∑
j=1

aijsigα1(x5i − x5j)

+
n∑
j=1

aijsigα2(x4i − x4j), (14b)

where ki (i = 1, 2, 3, 4, 5) > 0 are appropriate constants , 1 < p = p1
p2

< 2, p1, p2 are
positive odd integers, 0 < α1, α2 < 1.

Lemma 2.7. (Ou, Du and Li [23]) Suppose the external disturbances dji = 0 (j =
1, 2, i ∈ Γ), if Assumptions 2.2 – 2.4 hold, then the control laws (14) can make system
(8) uniformly globally finite time stable, i. e., system (4) can globally track the reference
trajectory (5) in finite time without external disturbances.

3. MAIN RESULT

In this section, we will solve the finite-time tracking control problem for system (4).
In other word, we will design control laws uji (j = 1, 2, i ∈ Γ) such that system (11)
can converge to zero in finite time. Since the external disturbances exist, i. e., dji 6=
0 (j = 1, 2, i ∈ Γ), the performance of the closed-loop system will degrade if no proper
method to deal with the disturbances. In order to improve the disturbance rejection
performance, disturbance observers are introduced to estimate the disturbances.

This section will give two subsections to obtain finite-time control laws uji (j =
1, 2, i ∈ Γ). In the first subsection, we consider the second-order subsystem (11b) and
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design finite-time tracking control laws u2i to guarantee system (11b) is finite time stable.
In the second subsection, finite-time tracking control laws u1i is given to guarantee
third-order subsystem (11a) is finite time stable. Both subsection consists of two steps.
In the first step, the finite-time disturbance observers are designed to estimate the
external disturbances dji (j = 1, 2, i ∈ Γ). In the second step, finite-time control laws
uji (j = 1, 2, i ∈ Γ) are designed, in which the estimated value of disturbances will be
used for the feed-forward compensation.

3.1. Design of u2i for each mobile robot

In this subsection, we will discuss second-order subsystem (11b) and design finite-time
controller u2i for robot i(i ∈ Γ).

3.1.1. Design of finite-time disturbance observer for d2i

Since there exists external disturbance d2i in system (11b), the system performance will
degrade if no efficient method to deal with the disturbances. In order to improve the
disturbance rejection performance, a finite-time disturbance observer is introduced to
estimate the disturbance d2i, and the estimated value of disturbance will introduced as
a feed-forward disturbance compensation part into controller (14b). Inspired by paper
[19, 28], we introduce a finite-time disturbance observer (FTDO) to estimate external
disturbance d2i, which can be written as follows [19, 28].

ż0i = ν0i − u2i + ω̇r, (15a)

ν0i = −λ0iL
1
2
1i|z0i − x5i| 12 sign(z0i − x5i)− z1i, (15b)

ż1i = −λ1iL1i sign(z1i + ν0i), i ∈ Γ, (15c)

where z0i and z1i are the estimates of x5i and d2i, respectively, L1i is an upper boundary
of ḋ2i, λ0i, λ1i > 0 being properly chosen so as to provide for the finite time convergence
of the differentiator with L1i.

According to Assumption 2.5, the existence of L1i is reasonable. Then, we have the
following results.

Lemma 3.1. (Shtessel, Shkolnikov and Levant [19, 28]) For the subsystem (11b) with
disturbance observer (15), there exist the observer gains λ0i, λ1i and L1i such that the
estimated states z0i, z1i converge to x5i and d2i, respectively.

3.1.2. Design of finite-time control law u2i

On the basis of the disturbance observer (15), the composite controller u2i for subsystem
(11b) is given as follows

u2i = ω̇r+k4 sigα1x5i+k5 sigα2x4i+
n∑
j=1

aij sigα1(x5i − x5j)+
n∑
j=1

aij sigα2(x4i − x4j)−z1i,

(16)
where α1 and α2 are defined as that in Remark 2.6. Then, we have the following theorem.
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Theorem 3.2. If Assumptions 2.2 – 2.5 hold, control law (16) makes subsystem (11b)
finite time stable in the presence of external disturbances.

P r o o f . Substituting control law (16) into (11b), one obtains

ẋ4i = x5i, (17a)

ẋ5i = −k4 sigα1x5i − k5 sigα2x4i −
n∑
j=1

aij sigα1(x5i − x5j)

−
n∑
j=1

aij sigα2(x4i − x4j) + (z1i − d2i). (17b)

On one hand, from Lemma 3.1, we know that there exists a time t0 > 0 such that
z1i = d2i for any t > t0. On the other hand, according to Lemma 2.7, the closed-loop
system (17) is finite time stable when t > t0. Thus, in the following, we only need to
prove states x4i and x5i are bounded during t ≤ t0.

Consider the following function

V (x4i, x5i) =
1
2

n∑
i=1

n∑
j=1

∫ x4i−x4j

0

aij sigα2(s) ds+
1
2

n∑
i=1

x2
5i +

k5

1 + α2

n∑
i=1

|x4i|1+α2 , (18)

which is positive definite with respect to x4i, x5i. Denote e1i = z1i − d2i. Based on
Assumption 2.2, it can be obtained that aij = aji. Differentiating V (x4i, x5i) along the
closed-loop system (17) and making use of Lemma 2.1, we have

V̇ (x4i, x5i) =
n∑
i=1

n∑
j=1

aij sigα2(x4i − x4j)ẋ4i +
n∑
i=1

x5iẋ5i + k5

n∑
i=1

sigα2x4iẋ4i

= −k4

n∑
i=1

x5i sigα1x5i −
n∑
i=1

n∑
j=1

aijx5i sigα1(x5i − x5j) +
n∑
i=1

x5i(z1i − d2i)

= −k4

n∑
i=1

|x5i|1+α1 − 1
2

n∑
i=1

n∑
j=1

(aij + aji)x5i sigα1(x5i − x5j) +
n∑
i=1

x5ie1i

= −k4

n∑
i=1

|x5i|1+α1 − 1
2

n∑
i=1

n∑
j=1

aijx5i sigα1(x5i − x5j)

− 1
2

n∑
j=1

n∑
i=1

aijx5j sigα1(x5j − x5i) +
n∑
i=1

x5ie1i

= −k4

n∑
i=1

|x5i|1+α1 − 1
2

n∑
i=1

n∑
j=1

aij
{

(x5i − x5j) sigα1(x5i − x5j)
}

+
n∑
i=1

x5ie1i

= −k4

n∑
i=1

|x5i|1+α1 − 1
2

n∑
i=1

n∑
j=1

aij |x5i − x5j |1+α1 +
n∑
i=1

x5ie1i

≤
n∑
i=1

|x5i||e1i|.
(19)

Since e1i converges to zero in finite time, thus e1i is bounded, we denote |e1i| ≤ γ, where
γ > 0 is a constant.
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If |x5i| > 1, one obtains

V̇ (x4i, x5i) ≤
n∑
i=1

|x5i|2|e1i| ≤ 2γV (x4i, x5i). (20)

If |x5i| ≤ 1, equation (19) can be written as

V̇ (x4i, x5i) ≤ l1|e1i| ≤ l1γ, l1 ≥ n. (21)

Therefore, for any xji (j = 4, 5, i ∈ Γ), we have

V̇ (x4i, x5i) ≤ 2γV (x4i, x5i) + l1γ. (22)

From (22), one has

V (x4i, x5i) ≤
(
V (x4i(0), x5i(0)) +

l1
2

)
e2γt − l1

2
. (23)

Therefore, xji (j = 4, 5, i ∈ Γ) are bounded when t ≤ t0. Thus, control law (16) makes
subsystem (11b) finite time stable. This completes the proof. �

3.2. Design of control law u1i

In this subsection, we consider third-order subsystem (11a) and design finite-time track-
ing control laws u1i to guarantee that system (11a) is finite time stable in the presence
of external disturbances.

3.2.1. Design of finite-time disturbance observer for ωrd1i

Because there exists disturbance d1i(i ∈ Γ) in third-order subsystem (11a), similar to
section 3.1, let us first design a finite-time disturbance observer to estimate ωrd1i, which
can be written as follows [19, 28]

˙̄z0i = ν̄0i + ū1i + ωru1i + g31, (24a)

ν̄0i = −λ̄0iL
1
2
2i|z̄0i − x3i| 12 sign(z̄0i − x3i) + z̄1i, (24b)

˙̄z1i = −λ̄1L2i sign(z̄1i − ν̄0i), (24c)

where ū1i, g31 are defined as (12) and (13c), z̄0i and z̄1i are the estimates of x3i and
ωrd1i, respectively, L2i is an upper boundary of d(ωrd1i)

dt .
According to Assumptions 2.3 and 2.5, the existence of L2i is reasonable. Then, we

have the following results.

Lemma 3.3. (Shtessel, Shkolnikov and Levant [19, 28]) For third-order subsystem
(11a) with disturbance observer (24), there exist the observer gains λ̄0i, λ̄1i and L2i

such that the estimated states z̄0i, z̄1i converge to x3i and ωrd1i, respectively.
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3.2.2. Design of finite-time control law u1i

Based on disturbance observer (24), we can get the following theorem.

Theorem 3.4. For subsystem (11a), If Assumptions 2.2 – 2.5 hold, and the controller
is given as follows

u1i = − k3
ωr

(
x

p
2−p

3i + k
p

2−p

2

(
xp2i + kp1

∑
j∈Ni

aij(x1i − x1j) + kp1x1i

)) 3
p−2

+ ω̇rx1i

−( ω̈r

ω2
r
− ωr − 2ω̇2

r

ω3
r

)x2i − 2ω̇r

ω2
r
x3i + v̇r − z̄1i

ωr
.

(25)

Then, the closed-loop system (11a) with control law (25) is finite time stable in the
presence of external disturbances.

P r o o f . According to Lemma 3.3, it is known that there exists a time t1 > 0 such that
z̄1i = ωrd1i for any t > t1. Similar to Theorem 3.2, in the following, we only need to
prove states xji (j = 1, 2, 3, i ∈ Γ) are bounded during t ≤ t1.

Substituting composite control law (25) into (11a), one obtains

ẋ1i = x2i − 1
ωr
x2ix5i + vr sinx4i,

ẋ2i = x3i + ωrx1ix5i − ωrvr(cosx4i − 1),

ẋ3i = −k3

(
x

p
2−p

3i + k
p

2−p

2

(
xp2i + kp1

∑
j∈Ni

aij(x1i − x1j) + kp1x1i

)) 3
p−2

+ x2ix5iωr

−ω2
rvr sinx4i + ω̇rx1ix5i − ω̇rvr(cosx4i − 1)− (z̄1i − ωrd1i).

(26)
Consider the finite time bounded function

B(X1i) =
1
2
x2

1i +
1
2
x2

2i +
1
2
x2

3i. (27)

Denote ē1i = z̄1i − ωrd1i. Taking the derivative of B(X1i) along system (26) yields

Ḃ(X1i) = x1iẋ1i + x2iẋ2i + x3iẋ3i

= x1i

(
x2i − 1

ωr
x2ix5i + vr sinx4i

)
+ x2i

(
x3i + ωrx1ix5i − ωrvr(cosx4i − 1)

)
+x3i

(
ū1i + ωrx2ix5i − ω2

rvr sinx4i + ω̇rx1ix5i − ω̇rvr(cosx4i − 1)
)

−x3i(z̄1i − ωrd1i)
≤ x1ix2i + (ωr − 1

ωr
)x1ix2ix5i + |vrx1i|+ x2ix3i + 2|ωrvrx2i|

+ωrx2ix3ix5i + |ω2
rvrx3i|+ ω̇rx1ix3ix5i + 2|ω̇rvrx3i| − x3iē1i

−k3x3i

(
x

p
2−p

3i + k
p

2−p

2

(
xp2i + kp1

∑
j∈Ni

aij(x1i − x1j) + kp1x1i

)) 3
p−2

.

First of all, based on Theorem 3.2 and Lemma 3.3, the states xji (j = 4, 5, i ∈ Γ) and ē1i

reach zero in finite time. Thus, x5i and ē1i are bounded, we denote |x5i(t)| ≤ xmax
5 and

|ē1i| < γ1, where xmax
5 > 0 and γ1 > 0 are two constants. Let η1 = ‖X1i(t)‖ =
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√
x2

1i + x2
2i + x2

3i ≥ η > 1, then we have |xji(t)| ≤ η1 ≤ η2
1 and |xji(t)||xli(t)| ≤

η2
1
2 , (j, l = 1, 2, 3, i ∈ Γ). With this in mind, we obtain

Ḃ(X1i) ≤ η2
1
2 + η2

1
2 |ωr − 1

ωr
|xmax

5 + η2
1 |vr|+ η2

1
2 + 2η2

1 |ωrvr|+ η2
1
2 |ωr|xmax

5 + η2
1 |ω2

rvr|

+η2
1
2 |ω̇r|xmax

5 + 2η2
1 |ω̇rvr|+ η2

1 ē1i + k3η1

∣∣∣∣η p
2−p

1 + k
p

2−p

2 ηp1 + kp1k
p

2−p

2 k′η1

∣∣∣∣ 3p−2

≤ η2
1 + η2

1
2 |ωr − 1

ωr
|xmax

5 + η2
1 |vr|+ 2η2

1 |ωrvr|+ η2
1
2 |ωr|xmax

5 + η2
1 |ω2

rvr|

+η2
1
2 |ω̇r|xmax

5 + 2η2
1 |ω̇rvr|+ η2

1γ1 + k3η1

∣∣∣∣η p
2−p

1 + k
p

2−p

2 η
p

2−p

1 + kp1k
p

2−p

2 k′η
p

2−p

1

∣∣∣∣ 3p−2

≤ η2
1 + η2

1
2 |ωr − 1

ωr
|xmax

5 + η2
1 |vr|+ 2η2

1 |ωrvr|+ η2
1
2 |ωr|xmax

5 + η2
1 |ω2

rvr|

+η2
1
2 |ω̇r|xmax

5 +2η2
1 |ω̇rvr|+ η2

1
2 2γ1+k3η

2
1

∣∣∣∣1+k
p

2−p

2 +kp1k
p

2−p

2 k′
∣∣∣∣ 3p−2

= η2
1
2

(
2 + |ωr − 1

ωr
|xmax

5 + 2|vr|+ 4|ωrvr|+ |ωr|xmax
5 + 2|ω2

rvr|+ |ω̇r|xmax
5

+4|ω̇rvr|+ 2γ1 + 2k3

(
1 + k

p
2−p

2 + kp1k
p

2−p

2 k′
) 3

p−2
)
,

(28)
where k′ = 1+2

∑
j∈Ni

aij . b′ = max{b1, b2, . . . , bn}. Consider Assumptions 2.3 – 2.4, then

Ḃ(X1i) can be rewritten as
Ḃ(X1i) ≤ KB(X1i), (29)

where

K = 2 + |ωmax
r + 1

ωmin
r
|xmax

5 + 2vmax
r + 4ωmaxr vmax

r + ωmax
r xmax

5 + 2(ωmax
r )2

vmax
r

+ωmax1 xmax
5 + 4ωmax

1 vmax
r + 2γ1 + 2k3

(
1 + k

p
2−p

2 + kp1k
p

2−p

2 k′
) 3

p−2
.

(30)
On the other hand, if η1 ≤ 1, there exists a constant L > 0 such that Ḃ(X1i) ≤ L. Thus,
for any xji (j = 1, 2, 3, i ∈ Γ), we have

Ḃ(X1i) ≤ KB(X1i) + L. (31)

From (31), we can obtain

B(X1i) ≤
(
B(X1i(0)) +

L

K

)
eKt − L

K
. (32)

Therefore, xji (j = 1, 2, 3, i ∈ Γ) are bounded when t ≤ t1. Thus, control law (25) can
make subsystem (11a) finite time stable. This completes the proof. �

By virtue of Theorems 3.2 and 3.4, we have the following main result.

Theorem 3.5. Consider systems (4) – (5) satisfying Assumptions 2.2 – 2.5, then control
laws (16) and (25) make system (4) globally track the reference trajectory (5) in finite
time, where the control parameters are chosen as in Remark 2.6.
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P r o o f . From the proof procedure of Theorems 3.2 and 3.4, control laws (16) and (25)
make the states xji = 0 (j = 1, 2, 3, 4, 5, i ∈ Γ) of system (11) converge to zero in finite
time, i. e., system (4) globally tracks the reference trajectory (5) in finite time. Thus,
the proof is completed. �

4. SIMULATION RESULTS

In this section, a numerical example is provided to illustrate our theoretical results
derived in the previous section. The information exchange among mobile robots is shown
in Figure 1, where 1, 2, 3, 4, 5 are five mobile robots. We choose aij = 1 if (i, j) ∈ E and
aij = 0 otherwise.

Fig. 1. Undirected and connected graph G.

In simulation we take the initial states as
xi(0) = (0.1507,−0.18, 0.2396, 0.1108,−0.4914)T , θi(0) = (1.86, 2.1, 2.3, 1.9, 2.27)T ,
yi(0) = (−0.0856, 0.0106, 0.4823,−0.015,−0.3479)T , ωi(0) = (1.8, 1.95, 2.4, 1.7, 2.15)T ,
vi(0) = (1.2375, 0.7, 1.85, 1.05, 0.075)T . The initial values of disturbance observers are
chosen as z0i(0) = (1.8, 1.95, 2.4, 1.7, 2.15)T , z1i(0) = (0, 0, 0, 1, 0)T ,
z̄0i(0) = (1.86, 2.1, 2.3, 1.9, 2.27)T , and z̄1i(0) = (0, 1, 0, 1, 0)T .

The reference velocities for system (5) are selected as in [20]: vr = 1.5 − 1.5t
t+10m/s,

ωr = 1 + 2t
t+10rad/s. The external disturbances are designed as d11 = sin(t), d12 =

cos(2t), d13 = 0.5 sin(t), d14 = cos(t), d15 = 0.3 sin(t), d21 = 0.2 sin(t), d22 = cos(t), d23 =
sin(2t), d24 = 0.3 cos(3t), d25 = 0.8 sin(2t). Choose the gains as λ01 = λ02 = λ03 =
λ04 = λ05 = 6, λ11 = λ12 = λ13 = λ14 = λ15 = 6, λ̄01 = λ̄02 = λ̄03 = λ̄04 = λ̄05 = 4,
λ̄11 = λ̄12 = λ̄13 = λ̄14 = λ̄15 = 4. Let p = 13

11 , α1 = 2
5 , α2 = 1

4 and k1 = 0.3, k2 =
5, k3 = 9, k4 = 4, k5 = 4. The simulation results are shown in Figure 2 – Figure 9.
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Fig. 2. Response curves of tracking errors θie (i = 1, 2, . . . , 5).

Figures 2 – 3 show the tracking errors of xie, yie, θie (i = 1, 2, . . . , 5) respect to time for
each mobile robot. In Figure 4, the time response of vi and ωi of system (4) with FTDO
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are plotted, showing that the expected tracking velocities have been achieved for system
(4) with the external disturbances under FTDO. Figures 5 – 8 show the disturbance
estimated by finite-time disturbance observers (FTDO)(15) and (24), we can see that
the observer exhibits excellent tracking performance. Figure 9 shows the control outputs
of u1i and u2i, respectively.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

Time (s)

T
ra

ck
in

g 
er

ro
rs

  x
ie

 (
m

)

 

 

agent 1
agent 2
agent 3
agent 4
agent 5

0 1 2 3 4 5 6

−0.5

0

0.5

Time (s)

T
ra

ck
in

g 
er

ro
rs

  y
ie

 (
m

)

 

 

agent 1
agent 2
agent 3
agent 4
agent 5

Fig. 3. Response curves of tracking errors xie and yie (i = 1, 2, . . . , 5).
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Fig. 4. Response curves of velocities vi and ωi (i = 1, 2, . . . , 5).

5. CONCLUSIONS

This paper has studied finite-time tracking control problem for a group of nonholonomic
mobile robots in dynamic model with external disturbances, where a kind of finite-time
disturbance observer has been introduced to estimate the external disturbances for each
mobile robot. First of all, the unified tracking error has been transformed a fifth-order
system consisting of two subsystems, i. e., a third-order subsystem and a second-order
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Fig. 5. Disturbance estimated by finite time disturbance observers

(FTDO)(15).
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(FTDO)(15).
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Fig. 7. Disturbance estimated by finite time disturbance observers

(FTDO)(24).
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Fig. 9. Response curves of control outputs.

subsystem for each robot. Then, these two subsystems have been discussed respectively,
continuous finite-time disturbance observers and finite-time tracking control laws have
been designed for each mobile robot. Rigorous proof has shown that these finite-time
controllers can make the states of a group of robots converge to a desired value in finite
time, i. e., all the robots can track the desired trajectory in a finite time. Simulation
results been presented to support the theoretical results. It is worth noting that the
communication topology graph here is required to be connected and undirected. Future
research will try to solve the case of directed network topology, which is more complicate
and general.
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