[1] Chen, L. P., Wei, S. B., Chai, Y.:
Adaptive projective synchronization between two different fractional-order chaotic systems with fully unknown parameters. Math. Problems Engrg. 2012 (2012), 1-16.
DOI 10.1155/2012/916140 |
Zbl 1264.34103
[2] Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro, R.:
Linares using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Comm. Nonlinear Sci. Numer. Simul. 22 (2015), 650-659.
DOI 10.1016/j.cnsns.2014.10.008 |
MR 3282452
[3] Farivar, F., Shoorehdeli, M. A.:
Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control. ISA Trans. 51 (2012), 50-64.
DOI 10.1016/j.isatra.2011.07.002
[5] Gong, Y. B., Lin, X., Wang, L.:
Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks. Science China - Chemistry 54 (2011), 1498-1503.
DOI 10.1007/s11426-011-4363-2
[6] Gutierrez, R. E., Rosario, J. M., Machado, J. T.:
Fractional order calculus: Basic concepts and engineering applications. Math. Problems Engrg. 2010 (2010), 1-10.
DOI 10.1155/2010/375858 |
Zbl 1190.26002
[8] Li, X. D., Bohner, M.:
Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback. Math. Computer Modelling 52 (2010), 643-653.
DOI 10.1016/j.mcm.2010.04.011 |
MR 2661751 |
Zbl 1202.34128
[10] Li, M. D., Li, D. H., Wang, J.:
Active disturbance rejection control for fractional-order system. ISA Trans. 52 (2013), 365-374.
DOI 10.1016/j.isatra.2013.01.001
[11] Lin, T. C., Kuo, C. H.:
H-infinity synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Trans. 50 (2011), 548-556.
DOI 10.1016/j.isatra.2011.06.001
[12] Lu, J. H., Chen, G. R.:
A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 841-846.
DOI 10.1109/tac.2005.849233 |
MR 2142000
[13] Lu, J. H., Chen, G. R.:
Generating multiscroll chaotic attractors: Theories, methods and applications. Int. J. Bifurcation Chaos 16 (2006), 775-858.
DOI 10.1142/s0218127406015179 |
MR 2234259
[14] Merrikh-Bayat, F., Karimi-Ghartemani, M.:
An efficient numerical algorithm for stability testing of fractional-delay systems. ISA Trans. 48 (2008), 32-37.
DOI 10.1016/j.isatra.2008.10.003
[15] Miao, Q. Y., Fang, J. A., Tang, Y.:
Increasing-order projective synchronization of chaotic systems with time delay. Chinese Phys. Lett. 26 (2009), 5, 050501.
DOI 10.1088/0256-307x/26/5/050501
[16] Miller, K. S., Ross, B.:
An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, 1993.
MR 1219954 |
Zbl 0789.26002
[18] Podlubny, I.:
Fractional Differential Equatons: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego 1999.
MR 1658022
[19] Slotine, J. J. E., Li, W.:
Applied nonlinear Control. Prentice Hall, 1999.
Zbl 0753.93036
[20] Sollund, T., Leib, H.:
Feedback communication with reduced delay over noisy time-dispersive channels. IEEE Transa. Commun. 60 (2012), 688-705.
DOI 10.1109/tcomm.2012.12.100001
[21] Tan, S. L., Lu, J. H., Yu, X. H.:
Adaptive synchronization of an uncertain complex dynamical network. Chinese Sci. Bull. 58 (2013), 28-29.
DOI 10.1007/s11434-013-5984-y
[22] Tan, S. L., Lu, J. H., Hill, D. J.:
Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 576-581.
DOI 10.1109/tac.2014.2329235 |
MR 3310190
[23] Tang, Y., Gao, H., Zou, W., Kurths, J.:
Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybernet. 43 (2013), 358-370.
DOI 10.1109/tsmcb.2012.2207718
[24] Tang, Y., Wong, W. K.:
Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Networks Learning Systems 24 (2013), 435-447.
DOI 10.1109/tnnls.2012.2236355
[25] Wang, X. Y., Wang, M. J.:
Hyperchaotic Lorenz system. Acta Physica Sinica 56 (2007), 5136-5141.
MR 2371460 |
Zbl 1267.93157
[27] Wang, S., Yu, Y. G.:
Generalized projective synchronization of fractional order chaotic systems with different dimensions. Chinese Phys. Lett. 29 (2012), 2, 020505.
DOI 10.1088/0256-307x/29/2/020505
[28] Zhao, L. D., Hu, J. B., al., J. A. Fang et:
Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. ISA Trans. 52 (2013), 738-743.
DOI 10.1016/j.isatra.2013.07.001
[30] Zhang, B. T., Pi, Y. G., Luo, Y.:
Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51 (2012), 649-656.
DOI 10.1016/j.isatra.2012.04.006
[31] Zhou, J., Lu, j. A., Lu, J. H.:
Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 652-656.
DOI 10.1109/tac.2006.872760 |
MR 2228029
[32] Zhu, W., Fang, J. A., Tang, Y.:
Identification of fractional-order systems via a switching differential evolution subject to noise perturbations. Physics Lett. A 376 (2012), 3113-3120.
DOI 10.1016/j.physleta.2012.09.042