[1] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.:
Introduction to the Theory of \hbox{Functional}-Differential Equations. Nauka, Moskva Russian. English summary (1991).
Zbl 0725.34071
[3] Burton, T. A.:
Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, Mineola (2006).
MR 2281958 |
Zbl 1160.34001
[4] Burton, T. A.:
Stability and Periodic Solutions of Ordinary and Functional-Differential Equations. Mathematics in Science and Engineering 178 Academic Press, Orlando (1985).
Zbl 0635.34001
[5] Burton, T. A., Furumochi, T.:
Asymptotic behavior of solutions of functional differential equations by fixed point theorems. Dyn. Syst. Appl. 11 (2002), 499-519.
MR 1946140 |
Zbl 1044.34033
[6] Burton, T. A., Hatvani, L.:
Asymptotic stability of second order ordinary, functional, and partial differential equations. J. Math. Anal. Appl. 176 (1993), 261-281.
DOI 10.1006/jmaa.1993.1212 |
Zbl 0779.34042
[8] Cahlon, B., Schmidt, D.:
Stability criteria for certain second order delay differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 593-621.
MR 1978592 |
Zbl 1036.34085
[9] Domoshnitsky, A.:
Nonoscillation, maximum principles, and exponential stability of second order delay differential equations without damping term. J. Inequal. Appl. (2014), 2014:361, 26 pages.
MR 3347683
[10] Domoshnitsky, A.:
Unboundedness of solutions and instability of differential equations of the second order with delayed argument. Differ. Integral Equ. 14 (2001), 559-576.
MR 1824743 |
Zbl 1023.34061
[11] Domoshnitsky, A.:
Componentwise applicability of Chaplygin’s theorem to a system of linear differential equations with time-lag. Differ. Equations 26 (1990), 1254-1259; translation from Differ. Uravn. 26 (1990), 1699-1705 Russian.
MR 1089738
[12] Došlá, Z., Kiguradze, I.:
On boundedness and stability of solutions of second order linear differential equations with advanced arguments. Adv. Math. Sci. Appl. 9 (1999), 1-24.
Zbl 0926.34061
[13] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics 190 Marcel Dekker, New York (1995).
[14] Erneux, T.:
Applied Delay Differential Equations. Surveys and Tutorials in the Applied Mathematical Sciences 3 Springer, New York (2009).
MR 2498700 |
Zbl 1201.34002
[15] Fomin, V. N., Fradkov, A. L., Yakubovich, V. A.:
Adaptive Control of Dynamical Objects. Nauka, Moskva Russian (1981).
Zbl 0522.93002
[16] Izyumova, D. V.:
On the boundedness and stability of the solutions of nonlinear second order functional-differential equations. Soobshch. Akad. Nauk Gruz. SSR 100 Russian (1980), 285-288.
Zbl 0457.34050
[17] Kolmanovskii, V., Myshkis, A.:
Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications 463 Kluwer Academic Publishers, Dordrecht (1999).
MR 1680144 |
Zbl 0917.34001
[18] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.:
Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110 Marcel Dekker, New York (1987).
MR 1017244 |
Zbl 0832.34071
[19] Minorsky, N.:
Nonlinear Oscillations. D. Van Nostrand Company, Princeton (1962).
Zbl 0102.30402
[20] Myshkis, A. D.:
Linear Differential Equations with Retarded Argument. Izdat. Nauka, Moskva Russian (1972).
Zbl 0261.34040
[22] Pontryagin, L. S.:
On the zeros of some elementary transcendental functions. Am. Math. Soc., Transl., II. Ser. 1 (1955), 95-110; Izv. Akad. Nauk SSSR, Ser. Mat. 6 Russian (1942), 115-134.
DOI 10.1090/trans2/001/06 |
Zbl 0068.05803
[23] Zhang, B.:
On the retarded Liénard equation. Proc. Am. Math. Soc. 115 (1992), 779-785.
Zbl 0756.34075