Previous |  Up |  Next

Article

Keywords:
variable exponent; atomic decomposition; martingale Hardy space; fractional integral
Summary:
This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let $(\Omega , \mathcal {F}, \mathbb {P})$ be a probability space and $p(\cdot )\colon \Omega \rightarrow (0,\infty )$ be a $\mathcal {F}$-measurable function such that $0<\inf \nolimits _{x\in \Omega }p(x)\leq \sup \nolimits _{x\in \Omega }p(x)<\infty $. It is proved that a predictable martingale Hardy space $\mathcal P_{p(\cdot )}$ has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy space with variable exponents when the stochastic basis is regular.
References:
[1] Chao, J.-A., Ombe, H.: Commutators on dyadic martingales. Proc. Japan Acad., Ser. A 61 (1985), 35-38. MR 0798032 | Zbl 0596.47024
[2] Cheung, K. L., Ho, K.-P.: Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent. Czech. Math. J. 64 (2014), 159-171. DOI 10.1007/s10587-014-0091-z | MR 3247452
[3] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis Birkhäuser, New York (2013). MR 3026953 | Zbl 1268.46002
[4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable {$L^p$} spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. MR 2210118 | Zbl 1100.42012
[5] Cruz-Uribe, D., Wang, L.-A. D.: Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), 447-493. DOI 10.1512/iumj.2014.63.5232 | MR 3233216 | Zbl 1311.42053
[6] Diening, L.: Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}. Math. Inequal. Appl. 7 (2004), 245-253. MR 2057643 | Zbl 1071.42014
[7] Diening, L., H{ä}stö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256 (2009), 1731-1768. DOI 10.1016/j.jfa.2009.01.017 | MR 2498558 | Zbl 1179.46028
[8] Fan, X., Zhao, D.: On the spaces {$L^{p(x)}(\Omega)$} and {$W^{m,p(x)}(\Omega)$}. J. Math. Anal. Appl. 263 (2001), 424-446. MR 1866056 | Zbl 1028.46041
[9] Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18 (2015), 1128-1145. MR 3417085
[10] Ho, K.-P.: John-Nirenberg inequalities on Lebesgue spaces with variable exponents. Taiwanese J. Math. 18 (2014), 1107-1118. DOI 10.11650/tjm.18.2014.3618 | MR 3245432
[11] Jiao, Y., Peng, L., Liu, P.: Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces Appl. 7 (2009), 153-166. DOI 10.1155/2009/465079 | MR 2541232
[12] Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John-Nirenberg inequalities on generalized BMO martingale spaces. (to appear) in Trans. Amer. Math. Soc (2014), arXiv:1408.4641v1 [math.FA], 20 Aug. 2014. MR 3557784
[13] Jiao, Y., Xie, G., Zhou, D.: Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces. Q. J. Math. 66 (2015), 605-623. DOI 10.1093/qmath/hav003 | MR 3356840 | Zbl 1317.42021
[14] Kováčik, O., Rákosník, J.: On spaces {$L^{p(x)}$} and {$W^{k,p(x)}$}. Czech. Math. J. 41 (1991), 592-618. MR 1134951
[15] Liu, P., Hou, Y.: Atomic decompositions of Banach-space-valued martingales. Sci. China, Ser. A 42 (1999), 38-47. DOI 10.1007/BF02872048 | MR 1692138 | Zbl 0928.46020
[16] Miyamoto, T., Nakai, E., Sadasue, G.: Martingale Orlicz-Hardy spaces. Math. Nachr. 285 (2012), 670-686. DOI 10.1002/mana.201000109 | MR 2902839 | Zbl 1260.60082
[17] Nakai, E., Sadasue, G.: Martingale Morrey-Campanato spaces and fractional integrals. J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. MR 2944703 | Zbl 1254.46035
[18] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262 (2012), 3665-3748. DOI 10.1016/j.jfa.2012.01.004 | MR 2899976 | Zbl 1244.42012
[19] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228. DOI 10.1007/s10587-014-0095-8 | MR 3247456
[20] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 German (1931), 200-211. DOI 10.4064/sm-3-1-200-211 | Zbl 0003.25203
[21] Sadasue, G.: Fractional integrals on martingale Hardy spaces for $0. Mem. Osaka Kyoiku Univ., Ser. III, Nat. Sci. Appl. Sci. 60 (2011), 1-7. MR 2963747
[22] Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equations Oper. Theory 77 (2013), 123-148. DOI 10.1007/s00020-013-2073-1 | MR 3090168 | Zbl 1293.42025
[23] Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics 1568 Springer, Berlin (1994). DOI 10.1007/BFb0073448 | MR 1320508 | Zbl 0796.60049
[24] Wu, L., Hao, Z., Jiao, Y.: John-Nirenberg inequalities with variable exponents on probability spaces. Tokyo J. Math. 38 (2) (2015). MR 3448862
[25] Yi, R., Wu, L., Jiao, Y.: New John-Nirenberg inequalities for martingales. Stat. Probab. Lett. 86 (2014), 68-73. DOI 10.1016/j.spl.2013.12.010 | MR 3162719 | Zbl 1292.60051
Partner of
EuDML logo