[1] Chao, J.-A., Ombe, H.:
Commutators on dyadic martingales. Proc. Japan Acad., Ser. A 61 (1985), 35-38.
MR 0798032 |
Zbl 0596.47024
[2] Cheung, K. L., Ho, K.-P.:
Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent. Czech. Math. J. 64 (2014), 159-171.
DOI 10.1007/s10587-014-0091-z |
MR 3247452
[3] Cruz-Uribe, D. V., Fiorenza, A.:
Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis Birkhäuser, New York (2013).
MR 3026953 |
Zbl 1268.46002
[4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.:
The boundedness of classical operators on variable {$L^p$} spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264.
MR 2210118 |
Zbl 1100.42012
[6] Diening, L.:
Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}. Math. Inequal. Appl. 7 (2004), 245-253.
MR 2057643 |
Zbl 1071.42014
[8] Fan, X., Zhao, D.:
On the spaces {$L^{p(x)}(\Omega)$} and {$W^{m,p(x)}(\Omega)$}. J. Math. Anal. Appl. 263 (2001), 424-446.
MR 1866056 |
Zbl 1028.46041
[9] Hao, Z., Jiao, Y.:
Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18 (2015), 1128-1145.
MR 3417085
[11] Jiao, Y., Peng, L., Liu, P.:
Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces Appl. 7 (2009), 153-166.
DOI 10.1155/2009/465079 |
MR 2541232
[12] Jiao, Y., Wu, L., Yang, A., Yi, R.:
The predual and John-Nirenberg inequalities on generalized BMO martingale spaces. (to appear) in Trans. Amer. Math. Soc (2014), arXiv:1408.4641v1 [math.FA], 20 Aug. 2014.
MR 3557784
[14] Kováčik, O., Rákosník, J.:
On spaces {$L^{p(x)}$} and {$W^{k,p(x)}$}. Czech. Math. J. 41 (1991), 592-618.
MR 1134951
[17] Nakai, E., Sadasue, G.:
Martingale Morrey-Campanato spaces and fractional integrals. J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages.
MR 2944703 |
Zbl 1254.46035
[19] Ohno, T., Shimomura, T.:
Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228.
DOI 10.1007/s10587-014-0095-8 |
MR 3247456
[21] Sadasue, G.:
Fractional integrals on martingale Hardy spaces for $0. Mem. Osaka Kyoiku Univ., Ser. III, Nat. Sci. Appl. Sci. 60 (2011), 1-7. MR 2963747
[24] Wu, L., Hao, Z., Jiao, Y.:
John-Nirenberg inequalities with variable exponents on probability spaces. Tokyo J. Math. 38 (2) (2015).
MR 3448862