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Abstract. We propose a new method for studying stability of second order delay differ-
ential equations. Results we obtained are of the form: the exponential stability of ordinary
differential equation implies the exponential stability of the corresponding delay differential
equation if the delays are small enough. We estimate this smallness through the coefficients
of this delay equation. Examples demonstrate that our tests of the exponential stability
are essentially better than the known ones. This method works not only for autonomous
equations but also for equations with variable coefficients and delays.
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1. Introduction

The main object of this paper is the second order delay differential equation

(1.1) x′′(t) +

m
∑

i=1

ai(t)x
′(t− θi(t)) +

m
∑

i=1

bi(t)x(t − τi(t)) = f(t), t ∈ [0,∞),

with a corresponding initial function defining what should be set in the equation

instead of x(t − τi(t)) when t − τi(t) < 0 or x′(t − θi(t)) when t − θi(t) < 0. For

simplicity and without loss of generality we can consider the zero initial function

(1.2) x(ξ) = x′(ξ) = 0, for ξ < 0.

Concerning the coefficients, delays and the function f we assume that f , ai, bi, τi, θi

(i = 1, . . . ,m) are measurable essentially bounded functions [0,∞) → (−∞,∞), and

τi(t) > 0, θi(t) > 0 for t > 0.
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Various aspects of oscillation and the asymptotic behavior of solutions to this

equation were studied in the known books [13], [18], [20]. Various applications of

equation (1.1) and its generalizations can be found, for example, in the theory of

self-excited oscillations, in oscillation processes in a vacuum tube, in dynamics of

an autogenerator, in description of processes of infeed grinding and cutting (see the

book [17]), in position control in mechanical engineering (for example, the model of

container crane: it is important the crane to move rapidly, the payload may sway and,

as a result, the crane operator can lose control of the payload), in electromechanical

systems, in combustion engines [14]. It was noted in [7], [8] that the equation

(1.3) x′′(t) + a1x
′(t) + a2x

′(t− τ) + b1x(t) + b2x(t− τ) = 0,

in the case b1b2 < 0, is of interest in machine tool analysis, in biology in explaining

self-balancing of the human body and in robotics in constructing biped robots [15]

(see bibliography in [7], [8]). The problem of stabilizing the rolling of a ship by the ac-

tivated tanks method in which ballast water is pumped from one position to another

was reduced in [19] to the analysis of stability of the second order equation (1.1).

Stability of delay equations was studied in the book [17]. Note the results on

stability of autonomous equations obtained there. Stability and instability of second

order autonomous delay differential equation (1.3) with constant coefficients and

delays were studied in [7], [8]. These results were based on Pontryagin’s technique

for the analysis of roots of quasi-polynomials [22]. Results on stability of the equation

(1.4) x′′(t) + ax′(t) + bx(t− τ) = 0, a > 0, b > 0,

were obtained in [4] by the method of Lyapunov’s functions. It was proven by

Burton (see [4]) that the simple inequality bτ < a implies the exponential stability of

equation (1.4). Other results obtained by the method of Lyapunov’s functions were

presented in the papers [6], [23]. In [5] the technique of fixed point theorems was

used for the analysis of stability of equation (1.1). Quite different results for stability

of equation (1.4) by a development of the fixed point method were obtained in [3].

First results on the exponential stability of the equation

(1.5) x′′(t) + a(t)x′(t− θ(t)) + b(t)x(t − τ(t)) = 0, a(t) > 0, b(t) > 0,

without the assumption θ(t) ≡ 0, as far as we know, were obtained in [11] and then

developed in [2]. Asymptotic properties of equation (1.5) without damping term (i.e.;

in the case a(t) ≡ 0 for t ∈ [0,∞)) were studied in ([20], Chapter III, Section 16,

pages 105–106), where instability of the equation

x′′(t) + bx(t− τ) = 0
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for every pair of positive constants b and τ was obtained. Conditions of instability

of the equation

(1.6) x′′(t) +
m
∑

i=1

bi(t)x(t − τi(t)) = 0, bi(t) > 0, τi(t) > 0, t ∈ [0,∞)

with variable coefficients and delays were obtained in [10].

The condition
∫∞
0

τ(t) dt < ∞ is necessary and sufficient for boundedness of all

solutions to the equation

x′′(t) + bx(t− τ(t)) = 0

(see [10]). Results about boundedness of solutions for vanishing delays (τi(t) → 0 for

t → ∞) and about asymptotic representations of solutions were obtained in [16], [21],
see also ([20], Chapter III, Section 16). Boundedness of solutions for equations with

advanced arguments (τi(t) 6 0) was studied in [12]. First results on the exponential

stability of the equation x′′(t) + ax(t)− bx(t− τ) = 0 with constant coefficients and

delay were obtained in [7], [8]. First results on the exponential stability of the second

order equation (1.6) without damping term and with variable coefficients and delays

were obtained in the recent paper [9].

Let us try to imagine situations in which variable delays and coefficients arising

in the delayed feedback control may be important: 1) the case of control for mis-

siles, where the delay depends on their distance from the controller and is variable;

2) spending of fuel implies the change of the mass of the missiles that leads to variable

coefficients in the delay system.

We understand a solution of equation (1.1), (1.2) as a function x : [0,∞) →
(−∞,∞) with absolutely continuous on every finite interval derivative x′ and essen-

tially bounded second derivative x′′ which satisfies this equation almost everywhere.

The general solution of equation (1.1), (1.2) can be represented in the form [1]

(1.7) x(t) =

∫ t

0

C(t, s)f(s) ds+ x1(t)x(0) + x2(t)x
′(0),

where x1(t), x2(t) are two solutions of the homogeneous equation (1.8), (1.2), where

(1.8) x′′(t) +

m
∑

i=1

ai(t)x
′(t− θi(t)) +

m
∑

i=1

bi(t)x(t− τi(t)) = 0, t ∈ [0,∞),

satisfying the conditions

(1.9) x1(0) = 1, x′
1(0) = 0, x2(0) = 0, x′

2(0) = 1;
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the kernel C(t, s) in this representation is called the Cauchy function (fundamental

function in other terminology) of equation (1.1).

Note that in the classical books on delay differential equations [13], [18], [20], the

homogeneous equations are considered as equation (1.8) with absolutely continuous

initial function

(1.10) x(ξ) = ϕ(ξ), x′(ξ) = ϕ′(ξ) for ξ < 0.

Let us formulate several definitions concerning stability.

Definition 1.1. Equation (1.8), (1.10) is uniformly exponentially stable if there

exist N > 0 and α > 0 such that the solution of (1.8), (1.10), where

x(ξ) = ϕ(ξ), x′(ξ) = ϕ′(ξ), ξ < t0, x(t0) = x0, x′(t0) = x′
0,

satisfies the estimate

(1.11) |x(t)| 6 Ne−α(t−t0), |x′(t)| 6 Ne−α(t−t0), 0 6 t < ∞,

where N and α do not depend on t0.

Definition 1.2. The Cauchy function C(t, s) of equation (1.1) satisfies the ex-

ponential estimate if there exist positive N and α such that

(1.12) |C(t, s)| 6 Ne−α(t−s), |C′
t(t, s)| 6 Ne−α(t−s), 0 6 s 6 t < ∞.

It is known that for equation (1.1) with bounded delays these two definitions are

equivalent [1].

In this paper we develop the approach of the paper [2] and improve essentially its

results on the exponential stability. In the corresponding cases we improve the noted

above Burton’s result [4] for equation (1.4) (see Remark 2.4 below). Our technique

in the study of the exponential stability is based on the Bohl-Perron theorem: for

equation (1.1) with bounded delays, the exponential estimate of the Cauchy function

is equivalent to the fact that for every bounded right hand side f , the solution x and

its derivative x′ are bounded [1].

The paper is built as follows. In the first section we describe known results on

asymptotic properties of second order delay equations. In Section 2, we formulate the

main results of the paper and compare them with known results. Auxiliary assertions

can be found in Section 3. Proofs of the assertions, formulated in Section 2, can be

found in Section 4. An open problem is formulated in Section 5.
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2. Formulation of main results

Let us consider the following ordinary differential equation:

(2.1) x′′(t) +Ax′(t) +Bx(t) = z(t), t ∈ [0,∞), A > 0, B > 0,

where z is an essentially bounded measurable function with constant positive coef-

ficients A and B. Denote by W (t, s) the Cauchy function of equation (2.1). It is

known that for every fixed s the function W (t, s), as a function of the variable t,

satisfies the homogeneous equation

(2.2) x′′(t) + Ax′(t) +Bx(t) = 0, t ∈ [s,∞),

and the initial conditions

(2.3) x(s) = 0, x′(s) = 1.

It is known that the solution of the equation (2.1) which satisfies the initial con-

ditions

(2.4) x(0) = 0, x′(0) = 0

can be written in the form

(2.5) x(t) =

∫ t

0

W (t, s)z(s) ds.

Its derivatives are

(2.6) x′(t) =

∫ t

0

W ′
t (t, s)z(s) ds, x′′(t) =

∫ t

0

W ′′
tt(t, s)z(s) ds+ z(t).

Let us denote

|W | = lim
t→∞

sup
t>0

∫ t

0

|W (t, s)| ds,(2.7)

|W ′
t | = lim

t→∞
sup
t>0

∫ t

0

|W ′
t (t, s)| ds, |W ′′

tt| = lim
t→∞

sup
t>0

∫ t

0

|W ′′
tt(t, s)| ds.(2.8)

Denote by Ai and Bi the average values of the coefficients ai(t) and bi(t) in

equation (1.1), respectively. To connect equations (1.1) and (2.1) we suppose below

that the coefficients A and B in equation (2.1) are the sums A =
m
∑

i=1

Ai, B =
m
∑

i=1

Bi.

Denote also ∆ai(t) = Ai − ai(t), |∆ai|∗ = ess sup
t>0

|∆ai(t)|, ∆bi(t) = Bi − bi(t),

|∆bi|∗ = ess sup
t>0

|∆bi(t)|, θ∗i = ess sup
t>0

θi(t), θ
∗ = max

i=1,...,m
θ∗i , τ

∗
i = ess sup

t>0
τi(t), τ

∗ =

max
i=1,...,m

τ∗i .
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Theorem 2.1. Let A > 0, B > 0 and let the following inequality be fulfilled:

(2.9)
m
∑

i=1

|Ai|θ∗i {|W ′′
tt|+ 1}+

m
∑

i=1

|∆ai|∗|W ′
t |

+

m
∑

i=1

|Bi|τ∗i |W ′
t |+

m
∑

i=1

|∆bi|∗|W | < 1.

Then the Cauchy function C(t, s) of equation (1.1) and the fundamental system

x1(t), x2(t) of equation (1.8), (1.2) satisfy the exponential estimate.

Remark 2.1. Denoting P = |W |, Q = |W ′
t |, R = |W ′′

tt|, we have a simple geo-
metrical interpretation of this result. Let as define the coordinates: X =

m
∑

i=1

|Ai|θ∗i ,

Y =
m
∑

i=1

{|∆ai|∗ + |Bi|τ∗i }, Z =
m
∑

i=1

|∆bi|∗. Condition (2.9) is fulfilled for every inte-
rior point (X,Y, Z) of the pyramid bounded by the planes (1+R)X+QY +PZ = 1,

X = 0, Y = 0, Z = 0.

Remark 2.2. It is clear from inequality (2.9) that in the case, when the coef-

ficients ai(t) and bi(t) (i = 1, . . . ,m) are close to constants, the second and fourth

terms are small, and in the case of small delays θi(t) and τi(t) (i = 1, . . . ,m), the

first and third terms are small. We can make the conclusion that in this case equa-

tion (1.1) preserves the property of the exponential stability of equation (2.1).

Remark 2.3. Below in Section 3 we compute the exact values of |W |, |W ′
t | and

|W ′′
tt|. It is clear from inequality (2.9) that in the case of exact |W |, |W ′

t | and |W ′′
tt|,

we can obtain better tests of the exponential stability. Let us compare exact values

of |W |, |W ′
t | with their estimates obtained in [2]. For A = 3, B = 1.25, we have the

case A2 − 4B = 4 > 0 and |W | = 0.8 in both works in this situation. Concerning

|W ′
t | we have |W ′

t | = 3, according to [2], and |W ′
t | ≈ 0.53499, according to our result.

For A = 3, B = 2, we have also the case A2 − 4B = 1 > 0. In both cases |W | = 0.5.

Concerning |W ′
t | we have |W ′

t | = 6, according to [2], and |W ′
t | = 0.5, according to our

result. For A = 1, B = 1, we are in the case A2 < 4B. We have |W | = 2, according

to [2], and |W | ≈ 1.6044, according to our result, and |W ′
t | = 3.15, according to [2],

and |W ′
t | ≈ 0.551, according to our result. For the case A2 = 4B, we have in both

cases |W | = 1/B. Concerning |W ′
t | we have |W ′

t | = 2/
√
B, according to [2], and

|W ′
t | = 2/(e

√
B), according to our result.
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Theorem 2.2. Let A > 0, B > 0, A2 > 4B and let the following inequality be

fulfilled:

(2.10)
m
∑

i=1

|Ai|θ∗i
{ 2

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/

√
A2−4B

+ 1
}

+

m
∑

i=1

|∆ai|∗
4

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/(2

√
A2−4B)

+
m
∑

i=1

|Bi|τ∗i
4

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/(2

√
A2−4B)

+

m
∑

i=1

|∆bi|∗
1

B
< 1.

Then the Cauchy function C(t, s) of equation (1.1) and the fundamental system

x1(t), x2(t) of equation (1.8), (1.2) satisfy the exponential estimate.

Theorem 2.3. Let A > 0, B > 0, A2 = 4B and let the following inequality be

fulfilled:

(2.11)

m
∑

i=1

|Ai|θ∗i
{

2 +
A

4
−
(

1− A

4

) 1

e2

}

+

m
∑

i=1

|∆ai|∗
4

Ae

+

m
∑

i=1

|Bi|τ∗i
4

Ae
+

m
∑

i=1

|∆bi|∗
1

B
< 1.

Then the Cauchy function C(t, s) of equation (1.1) and the fundamental system

x1(t), x2(t) of equation (1.8), (1.2) satisfy the exponential estimate.

Theorem 2.4. Let A > 0, B > 0, A2 < 4B and let the following inequality be

fulfilled:

(2.12)

m
∑

i=1

|Ai|θ∗i
{ 2B

A
√
4B −A2

+ 1
}

+

m
∑

i=1

|∆ai|∗
2√
B

exp
[

− A√
4B−A2

(

π + arctg
√
4B−A2

A

)]

1− exp
[

− A√
4B−A2

π

]

+
m
∑

i=1

|Bi|τ∗i
2√
B

exp
[

− A√
4B−A2

(

π + arctg
√
4B−A2

A

)]

1− exp
[

− A√
4B−A2

π

]

+

m
∑

i=1

|∆bi|∗
1

B

1 + exp
(

− A√
4B−A2

π

)

1− exp
(

− A√
4B−A2

π

) < 1.
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Then the Cauchy function C(t, s) of equation (1.1) and the fundamental system

x1(t), x2(t) of equation (1.8), (1.2) satisfy the exponential estimate.

Let us formulate corollaries for the equation

(2.13) x′′(t) +Ax′(t− θ(t)) +Bx(t− τ(t)) = f(t), t ∈ [0,∞),

where

(2.14) x(ξ) = 0, x′(ξ) = 0 for ξ < 0,

A,B are constants and θ(t), τ(t), f(t) are measurable essentially bounded functions.

Denote θ∗ = ess sup
t>0

θ(t), τ∗ = ess sup
t>0

τ(t). All the corollaries are results of substitu-

tion of the values |W |, |W ′
t | and |W ′′

tt| in Theorems 2.2–2.4.

Corollary 2.1. Let A > 0, B > 0, A2 > 4B,

(2.15) Aθ∗
{

1 +
2

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/

√
A2−4B}

+Bτ∗
4

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/(2

√
A2−4B)

< 1.

Then the Cauchy function C(t, s) of equation (2.13) and the fundamental system

x1(t), x2(t) of equation (2.13), (2.14) satisfy the exponential estimate.

Corollary 2.2. Let A > 0, B > 0, A2 = 4B,

(2.16) Aθ∗
{

1 +
A

4
−
(

1− A

4

) 1

e2

}

+ τ∗
4B

Ae
< 1.

Then the Cauchy function C(t, s) of equation (2.13) and the fundamental system

x1(t), x2(t) of equation (2.13), (2.14) satisfy the exponential estimate.

Corollary 2.3. Let A > 0, B > 0, A2 < 4B,

(2.17) Aθ∗ +
2Bθ∗√
4B −A2

+ 2
√
Bτ∗

exp
[

− A√
4B−A2

(

π + arctg
√
4B−A2

A

)]

1− exp
[

− A√
4B−A2

π

] < 1.

Then the Cauchy function C(t, s) of equation (2.13) and the fundamental system

x1(t), x2(t) of equation (2.13), (2.14) satisfy the exponential estimate.

Remark 2.4. For the case a = 1, b = 1, the result bτ < a by Burton [4] leads us

to the condition τ < 1 for the exponential stability of equation (1.4). Corollary 2.3

claims that for τ < 4 equation (1.4) is exponentially stable.
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3. Values of integrals of the modulus of Cauchy functions

for auxiliary equations

Consider all possible cases: 1) A2 > 4B, 2) A2 = 4B, 3) A2 < 4B.

Lemma 3.1. Let A > 0, B > 0, A2 > 4B. Then

lim
t→∞

sup
t>0

∫ t

0

|W (t, s)| ds = 1

B
,(3.1)

lim
t→∞

sup
t>0

∫ t

0

|W ′
t (t, s)| ds(3.2)

=
4

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/(2

√
A2−4B)

,

lim
t→∞

sup
t>0

∫ t

0

|W ′′
tt(t, s)| ds(3.3)

= 1 +
2

A+
√
A2 − 4B

{A−
√
A2 − 4B

A+
√
A2 − 4B

}(A−
√
A2−4B)/

√
A2−4B

.

Lemma 3.2. Let A > 0, B > 0, A2 = 4B. Then

lim
t→∞

sup
t>0

∫ t

0

|W (t, s)| ds = 1

B
,(3.4)

lim
t→∞

sup
t>0

∫ t

0

|W ′
t (t, s)| ds =

4

Ae
,(3.5)

lim
t→∞

sup
t>0

∫ t

0

|W ′′
tt(t, s)| ds = 1 +

A

4
−
(

1− A

4

) 1

e2
.(3.6)

Lemma 3.3. Let A > 0, B > 0, A2 < 4B. Then

lim
t→∞

sup
t>0

∫ t

0

∣

∣W (t, s)
∣

∣ ds =
1

B

1 + exp
(

− A√
4B−A2

π

)

1− exp
(

− A√
4B−A2

π

) ,(3.7)

lim
t→∞

sup
t>0

∫ t

0

∣

∣W ′
t (t, s)

∣

∣ ds =
2√
B

exp
[

− A√
4B−A2

(

π + arctg
√
4B−A2

A

)]

1− exp
[

− A√
4B−A2

π

] ,(3.8)

lim
t→∞

sup
t>0

∫ t

0

|W ′′
tt(t, s)| ds =

2B

A
√
4B −A2

.(3.9)

1055



P r o o f of Lemma 3.1. The characteristic equation for (2.2) is

(3.10) k2 +Ak +B = 0.

Solving the characteristic equation (3.10), we obtain

(3.11) k1 =
−A−

√
A2 − 4B

2
, k2 =

−A+
√
A2 − 4B

2
.

Substituting the initial conditions (2.3), we get

W (t, s) =
1√

A2 − 4B

{

exp

[−A+
√
A2 − 4B

2
(t− s)

]

(3.12)

− exp

[−A−
√
A2 − 4B

2
(t− s)

]}

,

W ′
t (t, s) =

1√
A2 − 4B

{−A+
√
A2 − 4B

2
exp

[−A+
√
A2 − 4B

2
(t− s)

]

(3.13)

−(−A−
√
A2 − 4B)

2
exp

[−A−
√
A2 − 4B

2
(t− s)

]}

,

W ′′
tt(t, s) =

1√
A2 − 4B

{(−A+
√
A2 − 4B

2

)2

exp

[−A+
√
A2 − 4B

2
(t− s)

]

(3.14)

−
(−A−

√
A2 − 4B

2

)2

exp

[−A−
√
A2 − 4B

2
(t− s)

]}

.

The proof of (3.1) follows from [11].

Let us find the points where the derivative W ′
t (t, s) as a function of t for fixed s

changes its sign. We have

(3.15) t− s =
1√

A2 − 4B
ln

A+
√
A2 − 4B

A−
√
A2 − 4B

.

Denoting

(3.16) t∗ =
1√

A2 − 4B
ln

A+
√
A2 − 4B

A−
√
A2 − 4B

,
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we see from formula (3.13) that W ′
t (t, s) > 0 for t − s 6 t∗ and W ′

t (t, s) 6 0 for

t− s > t∗. We can compute for t > t∗ the integrals

∫ t

0

|W ′
t (t, s)| ds = −

∫ t−t∗

0

W ′
t (t, s) ds+

∫ t

t−t∗
W ′

t (t, s) ds

=
1√

A2 − 4B

{

exp

[−A+
√
A2 − 4B

2
t∗
]

− exp

[−A−
√
A2 − 4B

2
t∗
]}

+
1√

A2 − 4B

{

− exp

[−A+
√
A2 − 4B

2
t

]

+ exp

[−A−
√
A2 − 4B

2
t

]}

+
1√

A2 − 4B

{

−1 + exp

[−A+
√
A2 − 4B

2
t∗
]

+ 1− exp

[−A−
√
A2 − 4B

2
t∗
]}

=
1√

A2 − 4B

{

2 exp

[−A+
√
A2 − 4B

2
t∗
]

− 2 exp

[−A−
√
A2 − 4B

2
t∗
]}

+
1√

A2 − 4B

{

− exp

[−A+
√
A2 − 4B

2
t

]

+ exp

[−A−
√
A2 − 4B

2
t

]}

=
2√

A2 − 4B

{[

A+
√
A2 − 4B

A−
√
A2 − 4B

](−A+
√
A2−4B)/(2

√
A2−4B)

−
[

A+
√
A2 − 4B

A−
√
A2 − 4B

](−A−
√
A2−4B)/(2

√
A2−4B)}

− 1√
A2 − 4B

{

exp

[−A+
√
A2 − 4B

2
t

]

− exp

[−A−
√
A2 − 4B

2
t

]}

=
2√

A2 − 4B

{[

A+
√
A2 − 4B

A−
√
A2 − 4B

](−A+
√
A2−4B)/(2

√
A2−4B)[

1−
(

A−
√
A2 − 4B

A+
√
A2 − 4B

)]}

− 1√
A2 − 4B

{

exp

[−A+
√
A2 − 4B

2
t

]

− exp

[−A−
√
A2 − 4B

2
t

]}

=
4

A+
√
A2 − 4B

{[

A+
√
A2 − 4B

A−
√
A2 − 4B

](−A+
√
A2−4B)/(2

√
A2−4B)}

+
1√

A2 − 4B

{

exp

[−A+
√
A2 − 4B

2
t

]

− exp

[−A−
√
A2 − 4B

2
t

]}

.

After the passage to the limit, we get the equality

(3.17) lim
t→∞

sup
t>0

∫ t

0

|W ′
t (t, s)| ds

=
4

A+
√
A2 − 4B

[

A−
√
A2 − 4B

A+
√
A2 − 4B

](A−
√
A2−4B)/(2

√
A2−4B)

.
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Let us find the points where the derivative W ′′
tt(t, s) as a function of t for fixed s

changes its sign. We have

(3.18) t− s =
2√

A2 − 4B
ln

A+
√
A2 − 4B

A−
√
A2 − 4B

.

Denoting

(3.19) t∗∗ =
2√

A2 − 4B
ln

A+
√
A2 − 4B

A−
√
A2 − 4B

,

we see from formula (3.16) that W ′′
tt(t, s) 6 0 for t − s 6 t∗ and W ′′

tt(t, s) > 0

for t − s > t∗∗. Using the roots (3.11) of the characteristic equation (3.10) we can

compute for t > t∗∗ the integrals

∫ t

0

|W ′′
tt(t, s)| ds = −

∫ t−t∗∗

0

W ′′
tt(t, s) ds+

∫ t

t−t∗∗
W ′′

tt(t, s) ds

= − 1

k2 − k1

∫ t−t∗∗

0

[k21e
k1(t−s) − k22e

k2(t−s)] ds

+
1

k2 − k1

∫ t

t−t∗∗
[k21e

k1(t−s) − k22e
k2(t−s)] ds.

Denote

I1 = − 1

k2 − k1

∫ t−t∗∗

0

[k21e
k1(t−s) − k22e

k2(t−s)] ds,(3.20)

I2 =
1

k2 − k1

∫ t

t−t∗∗
[k21e

k1(t−s) − k22e
k2(t−s)] ds.(3.21)

We obtain

I1 = − 1

k2 − k1
[k1e

k1t − k2e
k2t − k1e

k1t
∗∗

+ k2e
k2t

∗∗

]

= − 1√
A2 − 4B

[

A+
√
A2 − 4B

2
exp

(−A−
√
A2 − 4B√

A2 − 4B
ln

A+
√
A2 − 4B

A−
√
A2 − 4B

)]

− 1√
A2 − 4B

[−A+
√
A2 − 4B

2
exp

(−A+
√
A2 − 4B√

A2 − 4B
ln

A+
√
A2 − 4B

A−
√
A2 − 4B

)]

− k1
k2 − k1

ek1t +
k2

k2 − k1
ek2t

= − 1√
A2 − 4B

[

A+
√
A2 − 4B

2

(

A+
√
A2 − 4B

A−
√
A2 − 4B

)(−A−
√
A2−4B)/

√
A2−4B]

− 1√
A2 − 4B

[−A+
√
A2 − 4B

2

(

A+
√
A2 − 4B

A−
√
A2 − 4B

)(−A+
√
A2−4B)/

√
A2−4B]

− k1
k2 − k1

ek1t +
k2

k2 − k1
ek2t;
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I2 =
1

k2 − k1
[−k1 + k1e

k1t
∗∗

+ k2 − k2e
k2t

∗∗

]

= 1 +
−A−

√
A2 − 4B

2
√
A2 − 4B

[

A+
√
A2 − 4B

A−
√
A2 − 4B

](−A−
√
A2−4B)/

√
A2−4B

+
A−

√
A2 − 4B

2
√
A2 − 4B

[

A+
√
A2 − 4B

A−
√
A2 − 4B

](−A+
√
A2−4B)/

√
A2−4B

= 1 +

[

A−
√
A2 − 4B

A+
√
A2 − 4B

](A−
√
A2−4B)/

√
A2−4B

1

A+
√
A2 − 4B

;

I1 + I2 = 1− 1

2
√
A2 − 4B

(A+
√

A2 − 4B) exp

(−A−
√
A2 − 4B

2
t

)

− 1

2
√
A2 − 4B

(A−
√

A2 − 4B) exp

(−A+
√
A2 − 4B

2
t

)

+
2

A+
√
A2 − 4B

[

A−
√
A2 − 4B

A+
√
A2 − 4B

](A−
√
A2−4B)/

√
A2−4B

.

After the passage to the limit, we get the equality

(3.22) lim
t→∞

sup
t>0

∫ t

0

|W ′′
tt(t, s)| ds

= 1 +
2

A+
√
A2 − 4B

[A−
√
A2 − 4B

A+
√
A2 − 4B

](A−
√
A2−4B)/

√
A2−4B

.

Lemma 3.1 has been proved. �

P r o o f of Lemma 3.3. Solving characteristic equation (3.10), we get

(3.23) k1 =
−A

2
+ i

√
4B −A2

2
, k2 =

−A

2
− i

√
4B −A2

2
,

and substituting initial conditions (2.3), we get

(3.24) W (t, s) = m exp[−α(t− s)] sinβ(t− s),

where

α =
A

2
, β =

√
4B −A2

2
, m =

2√
4B −A2

;(3.25)

W ′
t (t, s) = m{−α exp[−α(t− s)] sinβ(t − s) + β exp[−α(t− s)] cosβ(t− s)},(3.26)

which can be rewritten in the form

(3.27) W ′
t (t, s) = −m

√

α2 + β2 exp[−α(t− s)] sin(β(t− s)− ϕ0),
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where ϕ0 = arctg(
√
4B −A2/A).

W ′′
tt(t, s) = m

√

α2 + β2 exp[−α(t− s)] sin(β(t− s)− 2ϕ0),(3.28)
∫ t

0

|W (t, s)| ds =
∫ t

0

m exp[−α(t− s)]| sin(β(t− s))| ds.

Denoting t− s = ζ, ds = − dζ, n = ⌊βt/π⌋, where ⌊q⌋ means the floor integer part
of q, we can write

∫ t

0

m exp[−αζ]| sin(βζ)| dζ

=

n−1
∑

k=0

∫ (k+1)π/β

kπ/β

m(−1)k exp[−αζ] sin(βζ) dζ +

∫ t

nπ/β

m(−1)n exp[−αζ] sin(βζ) dζ

=
n−1
∑

k=0

m(−1)k exp[−αζ]
[

−β cosβζ + α sinβζ

α2 + β2

]∣

∣

∣

(k+1)π/β

kπ/β

+m(−1)n
{

exp[−αζ]
[

−β cosβζ + α sinβζ

α2 + β2

]}∣

∣

∣

t

nπ/β

=
mβ

α2 + β2

n−1
∑

k=0

(−1)k
[

(−1)k exp
(

−kαπ

β

)

− (−1)k+1 exp
(

−kαπ

β
− πα

β

)]

+
m

α2 + β2
m(−1)n+1{exp[−αζ][β cosβζ + α sinβζ]}|tnπ/β

=
mβ

α2 + β2

n−1
∑

k=0

exp
(

−kαπ

β

)(

1 + exp
(

−πα

β

))

+
mβ

α2 + β2
(−1)n

[

exp
(

−nαπ

β

)

cosnπ − exp(−αt)(β cosβt+ α sinβt)
]

=
mβ

α2 + β2

[

1− exp(−nαπ/β)
](

1 + exp(−πα/β)
)

1− exp(−πα/β)

+
m

α2 + β2

[

β exp
(

−nαπ

β

)

− exp(−αt)(β cosβt+ α sinβt)
]

.

After the passage to the limit, we get the equality

lim
t→∞

sup
t>0

∫ t

0

|W (t, s)| ds = mβ

α2 + β2

1 + exp(−πα/β)

1− exp(−πα/β)
,

and substituting α, β and m from formulas (3.28) we obtain

lim
t→∞

sup
t>0

∫ t

0

|W (t, s)| ds = 1

B

1 + exp(−πA/
√
4B −A2)

1− exp(−πA/
√
4B −A2)

.
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Now we obtain

I(t) =

∫ t

0

|W ′
t (t, s)| ds = m

√

α2 + β2

∫ t

0

exp[−α(t− s)]| sin(β(t− s)− ϕ0)| ds

= m
√

α2 + β2

∫ t

0

exp(−ατ)| sin(βτ − ϕ0)| dτ

= m
√

α2 + β2

[

−
∫ ϕ0/β

0

exp(−ατ) sin(βτ − ϕ0) dτ

+

n−1
∑

k=0

(−1)k
∫ (k+1)π/β+ϕ0/β

kπ/β+ϕ0/β

exp(−ατ) sin(βτ − ϕ0) dτ

+ (−1)n
∫ t

nπ/β+ϕ0/β

exp(−ατ) sin(βτ − ϕ0) dτ

]

,

where n =
⌊

(tβ − ϕ0)/π

⌋

. Continuing this computing, we obtain

I(t) = − m
√

α2 + β2
exp(−ατ)[α sin(βτ − ϕ0) + β cos(βτ − ϕ0)]|ϕ0/β

0

− m
√

α2 + β2

n−1
∑

k=0

(−1)k exp(−ατ)[α sin(βτ − ϕ0) + β cos(βτ − ϕ0)]|(k+1)π/β+ϕ0/β
kπ/β+ϕ0/β

− m
√

α2 + β2
(−1)n exp(−ατ)[α sin(βτ − ϕ0) + β cos(βτ − ϕ0)]|tnπ/β+ϕ0/β

= − m
√

α2 + β2
β exp

(

−α

β
ϕ0

)

[α sin(−ϕ0) + β cos(−ϕ0)]

− m
√

α2 + β2

n−1
∑

k=0

(−1)k
[

exp
(

−α
(

π

β
(k + 1) +

ϕ0

β

))

(−1)k+1β

− exp
(

−α
(

π

β
k +

ϕ0

β

))

(−1)kβ
]

− m
√

α2 + β2
(−1)n

[

exp(−αt)
(

α sin(βt− ϕ0) + β cos(βt− ϕ0)
)

− exp
(

−α
(

π

β
n+

ϕ0

β

))

β(−1)n
]

=
m

√

α2 + β2

[

β cosϕ0 − α sinϕ0 − exp
(

−α

β
ϕ0

)

β
]

+
m

√

α2 + β2

n−1
∑

k=0

[

β exp
(

−α
π

β
(k + 1)− α

ϕ0

β

)

+ exp
(

−α
π

β
k − α

ϕ0

β

)]

+
m

√

α2 + β2

[

(−1)n+1(α sin(βt− ϕ0) + β cos(βt− ϕ0)) exp(−αt)

+ β exp
(

−α
(

π

β
n+

ϕ0

β

))]
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=
m

√

α2 + β2

[

−β exp
(

−α

β
ϕ0

)

+ β exp
(

−α

β
ϕ0

)

n−1
∑

k=0

(

1 + exp
(

−α

β
π

))

exp
(

−α

β
πk

)]

+
m

√

α2 + β2

[

(−1)n+1(α sin(βt− ϕ0) + β cos(βt− ϕ0)) exp(−αt))

+ β exp
(

−α
(

π

β
n+

ϕ0

β

))]

=
m

√

α2 + β2

[

β exp
(

−α

β
ϕ0

)(

1 + exp
(

−α

β
π

))1− exp
(

−α
β πn

)

1− exp
(

−α
β π

) − β exp
(

−α

β
ϕ0

)]

+
m

√

α2 + β2

[

(−1)n+1(α sin(βt− ϕ0) + β cos(βt− ϕ0)) exp(−αt))

+ β exp
(

−α
(

π

β
n+

ϕ0

β

))]

.

After the passage to the limit, we obtain

lim
t→∞

I(t) =
m

√

α2 + β2

[

β exp
(

−α

β
ϕ0

)1 + exp
(

−α
β π

)

1− exp
(

−α
β π

) − β exp
(

−α

β
ϕ0

)]

=
mβ

√

α2 + β2

2 exp
(

−α
β π

)

exp
(

−α
βϕ0

)

1− exp
(

−α
β π

)

=
2√
B

exp
[

− A√
4B−A2

(π + ϕ0)
]

1− exp
(

− A√
4B−A2

π

) ,

where ϕ0 = arctg(
√
4B −A2/A).

Now we obtain

J(t) =

∫ t

0

|W ′′
tt(t, s)| ds = m(α2 + β2)

∫ t

0

exp[−α(t− s)]| sin(β(t− s)− 2ϕ0)| ds

= m(α2 + β2)

∫ t

0

exp(−ατ)| sin(βτ − 2ϕ0)| dτ,

and denoting ϕ1 = 2ϕ0, we obtain

J(t) = m(α2 + β2)

∫ t

0

exp(−ατ)| sin(βτ − ϕ1)| dτ

and using the methods developed in computing I(t) in the previous part, we obtain

J(t) = m
[

β exp
(

−α

β
ϕ1

)1 + exp
(

−α
β π

)

1− exp
(

−α
β π

) − β exp
(

−α

β
ϕ1

)]

+m
[

(−1)n+1(α sin(βt − ϕ1) + β cos(βt− ϕ1)) exp(−αt))

+ β exp
(

−α
(

π

β
n+

ϕ1

β

))]

.
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After the passage to the limit, we obtain

lim
t→∞

J(t) = m
[

β exp
(

−α

β
ϕ1

)1 + exp
(

−α
β π

)

1− exp
(

−α
β π

) − β exp
(

−α

β
ϕ1

)]

= mβ exp
(

−α

β
ϕ1

)[1 + exp
(

−α
β π

)

1− exp
(

−α
β π

) − 1
]

= 2 exp
(

− 2A√
4B −A2

ϕ0

) exp
(

− A√
4B−A2

π

)

1− exp
(

− A√
4B−A2

π

) .

Thus we obtain

lim
t→∞

J(t) =
2 exp

(

− A√
4B−A2

(2ϕ0 + π)
)

1− exp
(

A√
4B−A2

π

) .

�

P r o o f of Lemma 3.2. Solving characteristic equation (3.10), we get

k1 = k2 =
−A

2
,

and substituting the initial conditions (2.3), we get

W (t, s) = (t− s) exp
[

−A

2
(t− s)

]

,

W ′
t (t, s) =

(

1− A

2
(t− s)

)

exp
[

−A

2
(t− s)

]

,

W ′′
tt(t, s) =

A

4
(A(t− s)− 4) exp

[

−A

2
(t− s)

]

.

Let us compute the integrals
∫ t

0 |W (t, s)| ds,
∫ t

0 |W ′
t (t, s)| ds and

∫ t

0 |W ′′
tt(t, s)| ds:

∫ t

0

|W (t, s)| ds =
∫ t

0

(t− s) exp
[−A

2
(t− s)

]

ds =
4

A2
−
(2t

A
+

4

A2

)

exp
(

−A

2
t
)

,

and after the passage to the limit we get

lim
t→∞

∫ t

0

|W (t, s)| ds = 4

A2
=

1

B
.

Let us compute the integral

∫ t

0

|W ′
t (t, s)| ds =

∫ t

0

∣

∣

∣

(

1− A

2
(t− s)

)

exp
[

−A

2
(t− s)

]∣

∣

∣
ds

for sufficiently large t.
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We can find the point t∗ = 2/A, such that the derivative W ′
t (t, s) changes its sign

at the point t− s = t∗. We have

∫ t

0

|W ′
t (t, s)| ds = −

∫ t−t∗

0

(

1− A

2
(t− s)

)

exp
[

−A

2
(t− s)

]

ds

+

∫ t

t−t∗

(

1− A

2
(t− s)

)

exp
[

−A

2
(t− s)

]

ds

=
4

Ae
− t exp

(

−A

2
t
)

.

After the passage to the limit we get the inequality

lim
t→∞

∫ t

0

|W ′
t (t, s)| ds =

4

Ae
.

Let us compute

∫ t

0

|W ′′
tt(t, s)| ds =

∫ t

0

∣

∣

∣

A

4
(A(t− s)− 4) exp

[

−A

2
(t− s)

]∣

∣

∣
ds.

We can find the point t∗∗ = 4/A such that the derivative W ′′
tt(t, s) changes its sign

at the point t− s = t∗∗. Then

∫ t

0

|W ′′
tt(t, s)| ds =

∫ t

0

∣

∣

∣

A

4
(A(t− s)− 4) exp

[

−A

2
(t− s)

]∣

∣

∣
ds,

∫ t

0

|W ′′
tt(t, s)| ds =

∫ t−t∗∗

0

A

4
[A(t− s)− 4] exp

[

−A

2
(t− s)

]

ds

−
∫ t

t−t∗∗

A

4
[A(t− s)− 4] exp

[

−A

2
(t− s)

]

ds

= 1− 1

e2
+

A

4

(

1 +
1

e2

)

+
(

2− A

2
t
)

exp
(

−A

2
t
)

.

After the passage to the limit, we obtain

lim
t→∞

∫ t

0

|W ′′
tt(t, s)| ds = 1− 1

e2
+

A

4

(

1 +
1

e2

)

.

�
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4. Proofs of main theorems

Consider the equation

x′′(t) +

m
∑

i=1

ai(t)x
′(t− θi(t)) +

m
∑

i=1

bi(t)x(t − τi(t)) = f(t), t ∈ [0,∞),(4.1)

x(ξ) = x′(ξ) = 0, for ξ < 0.(4.2)

It is known [1] that in the analysis of stability, we can consider only the zero initial

conditions

(4.3) x(0) = 0, x′(0) = 0.

Let us write equation (1.1) in the form

x′′(t) +Ax′(t) −Ax′(t) +
m
∑

i=1

ai(t)x
′(t− θi(t)) +Bx(t)−Bx(t)

+

m
∑

i=1

bi(t)x(t− τi(t)) = f(t),

and

x′′(t) +Ax′(t) +Bx(t) −
m
∑

i=1

Ai

∫ t

t−θi(t)

x′′(s) ds−
m
∑

i=1

∆ai(t)x
′(t− θi(t))

−
m
∑

i=1

Bi

∫ t

t−τi(t)

x′(s) ds−
m
∑

i=1

∆bi(t)x(t − τi(t)) = f(t), t ∈ [0,∞).

Let us make the so called W -transform [1], substituting

(4.4) x(t) =

∫ t

0

W (t, s)z(s) ds,

where z ∈ L∞ (L∞ is the space of essentially bounded functions z : [0,∞) →
(−∞,∞)), into the last equation. It is clear that

(4.5) x′(t) =

∫ t

0

W ′
t (t, s)z(s) ds, x′′(t) =

∫ t

0

W ′′
tt(t, s)z(s) ds+ z(t).

We get the equation

(4.6) z(t) = (Kz)(t) + f(t),
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where the operator K : L∞ → L∞ is defined by the equality

(4.7) (Kz)(t) =



































































m
∑

i=1

Aiσ(t− θi(t))

∫ t

t−θi(t)

{
∫ s

0

W ′′
ss(s, ξ)z(ξ) dξ + z(s)

}

ds

+

m
∑

i=1

∆ai(t)σ(t − θi(t))

∫ t−θi(t)

0

W ′
t (t− θi(t), s)z(s) ds(t)

+

m
∑

i=1

Biσ(t− τi(t))

∫ t

t−τi(t)

∫ s

0

W ′
s(s, ξ)z(ξ) dξ ds

+

m
∑

i=1

∆bi(t)σ(t− τi(t))

∫ t−τi(t)

0

W (t, s)z(s) ds,

and

(4.8) σ(t) =

{

1, t > 0,

0, t < 0.

Let us denote |K| = lim
t→∞
supt>0(K1)(t). The inequality (2.9) implies that |K| is

less than one. There exists a bounded operator (I −K)−1 : L∞ → L∞. For every

bounded right hand side f, the solution z of equation (4.6) is bounded.

In the case A > 0 and B > 0, the Cauchy function W (t, s) and its derivative

W ′
t (t, s) satisfy the exponential estimates. The boundedness of the solution x of

equation (1.1) and its derivative x′ follow now from the boundedness of z. According

to Bohl-Perron theorem [1], the Cauchy function C(t, s) of equation (1.1) and the

solutions x1 and x2 satisfy the exponential estimate.

To prove Theorems 2.2–2.4 we set the values of |W |, |W ′
t | and |W ′′

tt|, obtained in
Lemmas 3.1–3.3, into (2.9).

5. Open problem

In the previous works on the exponential stability of equation (1.1), it was assumed

that ai > 0 for all i = 1, . . . ,m (see [2], [4], [3], [11]) and ai = 0 for all i = 1, . . . ,m in

the paper [9]. Only for a special case m = 2, a1 > 0, τ1 = 0, a2 < 0 and τ2 = const,

stability of equation (1.1) is studied in the papers [7], [8]. It should be stressed

that assertions on stability of our paper could be true for equation (1.1) also in the

case when several among the coefficients ai are negative, but the sum A =
m
∑

i=1

Ai

of all average values Ai of the coefficients ai is positive. Is it possible to obtain

the exponential stability of equation (1.1) in the case of negativity of all coefficients

ai < 0 for all i = 1, . . . ,m, and consequently A < 0? Such results are considered

impossible, but, in our opinion, assertions of this sort will be proved in a future.
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