Previous |  Up |  Next

Article

Keywords:
representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology
Summary:
We study certain ${\mathfrak{sl}}(2,\mathbb{C})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak{g},\mathfrak{p})$, $(\mathfrak{g}^{\prime },\mathfrak{p}^{\prime })$ of Lie algebras and their parabolic subalgebras.
References:
[1] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85–124. DOI 10.1090/S0002-9947-1948-0024908-8 | MR 0024908 | Zbl 0031.24803
[2] Huang, J.-S., Pandžić, P.: Dirac operators in representation theory. Mathematics: Theory and Applications, Birkhäuser Boston, 2006, pp. xii+199. MR 2244116 | Zbl 1103.22008
[3] Huang, J.-S., Xiao, W.: Dirac cohomology of highest weight modules. Selecta Math. (N.S.) 18 (4) (2012), 803–824. DOI 10.1007/s00029-011-0085-8 | MR 3000469 | Zbl 1257.22012
[4] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category ${mathcal O}$. Grad. Stud. Math., vol. 94, 2008. DOI 10.1090/gsm/094/01 | MR 2428237
[5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. II. preprint.
[6] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1–57. MR 3406542 | Zbl 1327.53044
[7] Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I-General theory and F-method. II-Rankin-Cohen operators for symmetric pairs. to appear in Selecta Math., arXiv:1301.2111.
[8] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2) 74 (2) (1961), 329–387. DOI 10.2307/1970237 | MR 0142696 | Zbl 0134.03501
[9] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. MR 0396853
[10] Pandžić, P., Somberg, P.: Higher Dirac cohomology of modules with generalized infinitesimal character. to appear in Transform. Groups, arXiv:1310.3570.
Partner of
EuDML logo