[2] Huang, J.-S., Pandžić, P.:
Dirac operators in representation theory. Mathematics: Theory and Applications, Birkhäuser Boston, 2006, pp. xii+199.
MR 2244116 |
Zbl 1103.22008
[4] Humphreys, J.E.:
Representations of Semisimple Lie Algebras in the BGG Category ${mathcal O}$. Grad. Stud. Math., vol. 94, 2008.
DOI 10.1090/gsm/094/01 |
MR 2428237
[5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. II. preprint.
[6] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.:
Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1–57.
MR 3406542 |
Zbl 1327.53044
[7] Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I-General theory and F-method. II-Rankin-Cohen operators for symmetric pairs. to appear in Selecta Math., arXiv:1301.2111.
[9] Kostant, B.:
Verma modules and the existence of quasi-invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129.
MR 0396853
[10] Pandžić, P., Somberg, P.: Higher Dirac cohomology of modules with generalized infinitesimal character. to appear in Transform. Groups, arXiv:1310.3570.