[2] Ben-Zvi, D., Frenkel, E.:
Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004, Second ed.
MR 2082709 |
Zbl 1106.17035
[4] Dong, C., Lepowsky, J.:
Generalized Vertex Algebras and Relative Vertex Operators. Progr. Math., vol. 112, Birkhäuser (Boston, MA), 1993.
MR 1233387 |
Zbl 0803.17009
[5] Frenkel, I., Huang, Y., Lepowsky, J.:
On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (494) (1993), viii+64 pp.
MR 1142494 |
Zbl 0789.17022
[6] Frenkel, I. B., Lepowsky, J., Meurman, A.:
Vertex Operator Algebras and the Monster. Pure Appl. Math., vol. 134, Academic Press, Boston, 1988.
MR 0996026 |
Zbl 0674.17001
[7] Friedan, D., Shenker, S.:
The analytic geometry of two dimensional conformal field theory. Nuclear Phys. B 281 (1987), 509–545.
MR 0869564
[8] Gilroy, T.: Genus Two Zhu Theory for Vertex Operator Algebras. Ph.D. thesis, NUI Galway, 2013, 1–89.
[11] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10, AMS, Providence, 1998.
[15] Mason, G., Tuite, M.P.:
Vertex operators and modular forms. A window into zeta and modular physics. Math. Sci. Res. Inst. Publ., vol. 57, Cambridge Univ. Press, Cambridge, 2010, pp. 183–278.
MR 2648364
[16] Mason, G., Tuite, M.P.:
Free bosonic vertex operator algebras on genus two Riemann surfaces II. Contributions in Mathematical and Computational Sciences 8, Springer-Verlag, Berlin-Heidelberg, 2014.
MR 2736959 |
Zbl 1329.17027
[17] Mason, G., Tuite, M.P., Zuevsky, A.:
Torus $n$-point functions for $\mathbb{R}$-graded vertex operator superalgebras and continuous fermion orbifolds. Comm. Math. Phys. 283 (2008), 305–342.
DOI 10.1007/s00220-008-0510-9 |
MR 2430636
[18] Matsuo, A., Nagatomo, K.:
Axioms for a vertex algebra and the locality of quantum fields. MSJ Memoirs 4 (1999), x+110 pp.
MR 1715197 |
Zbl 0928.17025
[20] Tsuchiya, A., Ueno, K., Yamada, Y.:
Conformal field theory on universal family of stable curves with gauge symmetrie. Adv. Stud. Pure Math. 19 (1989), 459–566.
MR 1048605
[21] Tuite, M.P., Zuevsky, A.:
Genus two partition and correlation functions for fermionic vertex operator superalgebras II. arXiv:1308.2441v1, submitted.
MR 2824477
[25] Ueno, K.:
Introduction to conformal field theory with gauge symmetries. Geometry and Physics - Proceedings of the Conference at Aarhus Univeristy, Aarhus, Denmark, New York, Marcel Dekker, 1997.
MR 1423195 |
Zbl 0873.32022