Previous |  Up |  Next

Article

Keywords:
Lie algebra $\mathfrak{sl}(3,\mathbb{C})$; twisted Verma modules; composition structure; $\mathcal{D}$-modules
Summary:
We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak{sl}(3, \mathbb{C})$, including the explicit structure of singular vectors for both $\mathfrak{sl}(3, \mathbb{C})$ and one of its Lie subalgebras $\mathfrak{sl}(2, \mathbb{C})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as ${D}$-modules on the Schubert cells in the full flag manifold for $\mathop {\rm SL} \nolimits (3, \mathbb{C})$.
References:
[1] Abe, N.: On the existence of homomorphisms between principal series representations of complex semisimple Lie groups. J. Algebra 330 (1) (2011), 468–481. DOI 10.1016/j.jalgebra.2010.11.012 | MR 2774640 | Zbl 1220.22011
[2] Andersen, H.H., Lauritzen, N.: Twisted Verma modules. Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Boston, 2003, pp. 1–26. MR 1985191 | Zbl 1079.17002
[3] Beilinson, A.A., Bernstein, J.N.: Localisation de $\mathfrak{g}$-modules. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. MR 0610137
[4] Feigin, B.L., Frenkel, E.V.: Affine Kac-Moody algebras and semi-infinite flag manifolds. Comm. Math. Phys. 128 (1) (1990), 161–189. DOI 10.1007/BF02097051 | MR 1042449 | Zbl 0722.17019
[5] Fischer, E.: Über die Differentiationsprozesse der Algebra. J. Reine Angew. Math. 148 (1918), 1–78. MR 1580952
[6] Frenkel, E.V., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88, Amer. Math. Soc. Providence, 2004. MR 2082709 | Zbl 1106.17035
[7] Hotta, R., Takeuchi, K., Tanisaki, T.: $\mathcal{D}$-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, vol. 236, Birkhäuser Boston, 2008. MR 2357361
[8] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category $\mathcal{O}$. Graduate Studies in Mathematics, Amer. Math. soc. Providence, 2008. MR 2428237
[9] Kashiwara, M.: Representaion theory and $\mathcal{D}$-modules on flag varieties. Astérisque 173–174 (1989), 55–109. MR 1021510
[10] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs. Transform. Groups 17 (2) (2012), 523–546. DOI 10.1007/s00031-012-9180-y | MR 2921076 | Zbl 1257.22014
[11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1–57. MR 3406542 | Zbl 1327.53044
[12] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series. (2015) arXiv:1502.07095.
[13] Mazorchuk, V., Stroppel, C.: Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module. Trans. Amer. Math. Soc. 357 (2005), 2939–2973. DOI 10.1090/S0002-9947-04-03650-5 | MR 2139933 | Zbl 1095.17001
[14] Soergel, W.: Character formulas for tilting modules over Kac-Moody algebras. Represent. Theory 2 (1998), 432–448. DOI 10.1090/S1088-4165-98-00057-0 | MR 1663141 | Zbl 0964.17018
Partner of
EuDML logo