Previous |  Up |  Next

Article

Keywords:
phase space; infinitesimal symmetry; hidden symmetry; gravitational contact phase structure; almost-cosymplectic-contact phase structure; Killing multi-vector field; Killing–Maxwell multi-vector field; function constant of motions; conserved function
Summary:
We study relations between functions on the cotangent bundle of a spacetime which are constants of motion for geodesics and functions on the odd-dimensional phase space conserved by the Reeb vector fields of geometrical structures generated by the metric and an electromagnetic field.
References:
[1] Crampin, M.: Hidden symmetries and Killing tensors. Reports Math. Phys. 20 (1984), 31–40. DOI:  http://dx.doi.org/10.1016/0034-4877(84)90069-7 DOI 10.1016/0034-4877(84)90069-7 | MR 0761328 | Zbl 0551.58019
[2] Duval, C., Valent, G.: Quantum integrability of quadratic Killing tensors. J. Math. Phys. 46 (5) (2005), 053516. DOI:  http://dx.doi.org/10.1063/1.1899986 DOI 10.1063/1.1899986 | MR 2143025 | Zbl 1110.81116
[3] Iwai, T.: Symmetries in relativistic dynamics of a charged particle. Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. MR 0434248 | Zbl 0339.53039
[4] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2011, pp. 135–140. DOI:  http://dx.doi.org/10.1063/1.4733369 DOI 10.1063/1.4733369
[5] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle. Arch. Math. (Brno) 50 (5) (2014), 297–316. DOI:  http://dx.doi.org/10.5817/AM2014-5-297 DOI 10.5817/AM2014-5-297 | MR 3303779 | Zbl 1340.70017
[6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phasespace of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 11 (7) (2014), 1460020. DOI:  http://dx.doi.org/10.1142/S0219887814600202 DOI 10.1142/S0219887814600202 | MR 3249642
[7] Janyška, J.: Remarks on infinitesimal symmetries of geometrical structures of the classical phase space of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1560020. DOI:  http://dx.doi.org/10.1142/S0219887815600208 DOI 10.1142/S0219887815600208 | MR 3400660
[8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. DOI:  http://dx.doi.org/10.1142/S021988780800303X DOI 10.1142/S021988780800303X | MR 2445392 | Zbl 1160.53008
[9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. (9) 91 (2009), 211–2332. DOI:  http://dx.doi.org/10.1016/j.matpur.2008.09.007 DOI 10.1016/j.matpur.2008.09.007 | MR 2498755 | Zbl 1163.53051
[10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (2010), 1249–1276. DOI:  http://dx.doi.org/10.1007/s10440-009-9505-6 DOI 10.1007/s10440-009-9505-6 | MR 2639169 | Zbl 1208.15021
[11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 485205. DOI:  http://dx.doi.org/10.1088/1751-8113/45/48/485205 DOI 10.1088/1751-8113/45/48/485205 | MR 2998421 | Zbl 1339.70036
[12] Olver, P.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer, 1986. DOI 10.1007/978-1-4684-0274-2_2 | MR 0836734 | Zbl 0588.22001
[13] Sommers, P.: On Killing tensors and constant of motions. J. Math. Phys. 14 (1973), 787–790. DOI:  http://dx.doi.org/10.1063/1.1666395 DOI 10.1063/1.1666395 | MR 0329558
Partner of
EuDML logo