Previous |  Up |  Next

Article

Keywords:
characteristic function; empirical characteristic function; probability weighted moments; symmetry transformation
Summary:
We suggest a nonparametric version of the probability weighted empirical characteristic function (PWECF) introduced by Meintanis et al. [10] and use this PWECF in order to estimate the parameters of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. A real data illustration is also included.
References:
[1] Bickel, P. J.: On adaptive estimation. Ann. Statist. 10 (1982), 647-671. DOI 10.1214/aos/1176345863 | MR 0663424 | Zbl 0489.62033
[2] Bickel, P. J., Doksum, K. A.: An analysis of transformations revisited. J. Amer. Statist. Assoc. 76 (1981), 296-311. DOI 10.1080/01621459.1981.10477649 | MR 0624332 | Zbl 0464.62058
[3] Box, G. E. P., Cox, D. R.: An analysis of transformations. J. Roy. Statist. Soc. B 26 (1964), 211-243. MR 0192611 | Zbl 0504.62058
[4] Burbidge, J. B., Magee, L., Robb, A. L.: Alternative transformations to handle extreme values of the dependent variable. J. Amer. Statist. Assoc. 83 (1988), 123-127. DOI 10.1080/01621459.1988.10478575 | MR 0941005
[5] Chen, G., Lockhart, R., Stephens, M. A.: Box-Cox transformations in linear models: large sample theory and tests for normality (with discussion). Canad. J. Statist. 30 (2002), 1-59. DOI 10.2307/3315946 | MR 1926062
[6] González-Rivera, G., Drost, F. C.: Efficiency comparisons of maximum-likelihood-based estimators in GARCH models. J. Econometr. 93 (1999), 93-111. DOI 10.1016/s0304-4076(99)00005-6 | MR 1720166 | Zbl 0941.62101
[7] Horowitz, J. L.: Semiparametric and Nonparametric Methods in Econometrics. Springer-Verlag, New York 2009. DOI 10.1007/978-0-387-92870-8 | MR 2535631 | Zbl 1278.62005
[8] John, J. A., Draper, N. R.: An alternative family of transformations. J. Roy. Statist. Soc. C 29 (1980), 190-197. DOI 10.2307/2986305 | Zbl 0443.62062
[9] Manly, B. F. J.: Exponential data transformations. J. Roy. Statist. Soc. D 25 (1976), 37-42.
[10] Meintanis, S. G., Swanepoel, J., Allison, J.: The probability weighted characteristic function and goodness-of-fit testing. J. Statist. Plann. Infer. 146 (2014), 122-132. DOI 10.1016/j.jspi.2013.09.011 | MR 3132485 | Zbl 1279.62107
[11] Newey, W. K.: Adaptive estimation of regression models via moment restrictions. J. Econometr. 38 (1988), 301-339. DOI 10.1016/0304-4076(88)90048-6 | MR 0964634 | Zbl 0686.62045
[12] Newey, W. K., Steigerwald, D. G.: Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica 65 (1997), 587-599. DOI 10.2307/2171754 | MR 1445623 | Zbl 0870.62091
[13] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962), 1065-1076. DOI 10.1214/aoms/1177704472 | MR 0143282 | Zbl 0116.11302
[14] Pólya, G., Szegő, G.: Problems and Theorems in Analysis, Volume I. Springer-Verlag, Berlin 1998.
[15] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956), 832-837. DOI 10.1214/aoms/1177728190 | MR 0079873 | Zbl 0073.14602
[16] Savchuk, O. Y., Schick, A.: Density estimation for power transformations. J. Nonparametr. Statist. 25 (2013), 545-559. DOI 10.1080/10485252.2013.811788 | MR 3174283
[17] Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau. J. Amer. Statist. Assoc. 63 (1968), 1379-1389. DOI 10.1080/01621459.1968.10480934 | MR 0258201 | Zbl 0167.47202
[18] Theil, H.: A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. Proc. 53 (1950), 386-392, 521-525, 1397-1412. MR 0036490
[19] Yeo, I.-K., Johnson, R. A.: A new family of power transformations to improve normality or symmetry. Biometrika 87 (2000), 954-959. DOI 10.1093/biomet/87.4.954 | MR 1813988 | Zbl 1028.62010
[20] Yeo, I.-K., Johnson, R. A.: A uniform law of large numbers for $U$-statistics with application to transforming to near symmetry. Statist. Probab. Lett. 51 (2001), 63-69. DOI 10.1016/S0167-7152(00)00143-7 | MR 1820146
[21] Yeo, I.-K., Johnson, R. A.: An empirical characteristic function approach to selecting a transformation to symmetry. In: Contemporary Developments in Statistical Theory (S. Lahiri, A. Schick, A. SenGupta and T. Sriram, eds.), Springer International Publishing 2014, pp. 191-202. DOI 10.1007/978-3-319-02651-0_11 | MR 3149922
[22] Yeo, I.-K., Johnson, R. A., Deng, X. W.: An empirical characteristic function approach to selecting a transformation to normality. Commun. Stat. Appl. Methods 21 (2014), 213-224. DOI 10.5351/csam.2014.21.3.213 | Zbl 1305.62073
Partner of
EuDML logo