[3] Box, G. E. P., Cox, D. R.:
An analysis of transformations. J. Roy. Statist. Soc. B 26 (1964), 211-243.
MR 0192611 |
Zbl 0504.62058
[5] Chen, G., Lockhart, R., Stephens, M. A.:
Box-Cox transformations in linear models: large sample theory and tests for normality (with discussion). Canad. J. Statist. 30 (2002), 1-59.
DOI 10.2307/3315946 |
MR 1926062
[9] Manly, B. F. J.: Exponential data transformations. J. Roy. Statist. Soc. D 25 (1976), 37-42.
[12] Newey, W. K., Steigerwald, D. G.:
Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica 65 (1997), 587-599.
DOI 10.2307/2171754 |
MR 1445623 |
Zbl 0870.62091
[14] Pólya, G., Szegő, G.: Problems and Theorems in Analysis, Volume I. Springer-Verlag, Berlin 1998.
[18] Theil, H.:
A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. Proc. 53 (1950), 386-392, 521-525, 1397-1412.
MR 0036490
[20] Yeo, I.-K., Johnson, R. A.:
A uniform law of large numbers for $U$-statistics with application to transforming to near symmetry. Statist. Probab. Lett. 51 (2001), 63-69.
DOI 10.1016/S0167-7152(00)00143-7 |
MR 1820146
[21] Yeo, I.-K., Johnson, R. A.:
An empirical characteristic function approach to selecting a transformation to symmetry. In: Contemporary Developments in Statistical Theory (S. Lahiri, A. Schick, A. SenGupta and T. Sriram, eds.), Springer International Publishing 2014, pp. 191-202.
DOI 10.1007/978-3-319-02651-0_11 |
MR 3149922
[22] Yeo, I.-K., Johnson, R. A., Deng, X. W.:
An empirical characteristic function approach to selecting a transformation to normality. Commun. Stat. Appl. Methods 21 (2014), 213-224.
DOI 10.5351/csam.2014.21.3.213 |
Zbl 1305.62073