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KYBERNET IKA — VOLUME 5 1 ( 2 0 1 5 ) , NUMBER 4 , PAGES 5 7 1 – 5 8 7

TRANSFORMATIONS TO SYMMETRY BASED ON THE
PROBABILITY WEIGHTED CHARACTERISTIC FUNCTION

Simos G. Meintanis and Gilles Stupfler

We suggest a nonparametric version of the probability weighted empirical characteristic
function (PWECF) introduced by Meintanis et al. [10] and use this PWECF in order to estimate
the parameters of arbitrary transformations to symmetry. The almost sure consistency of the
resulting estimators is shown. Finite–sample results for i.i.d. data are presented and are
subsequently extended to the regression setting. A real data illustration is also included.

Keywords: characteristic function, empirical characteristic function, probability weighted
moments, symmetry transformation

Classification: 62G10, 62G20

1. INTRODUCTION

Transformations are applied on given data sets in order to facilitate statistical inference.
These transformations are often used so as to induce finite moments and light tails
and/or symmetry. This is important as it is common knowledge that certain statistical
procedures are applicable or perform well only under such assumptions. Apart from
that, symmetry has definite advantages for identification and consistency of location
estimators with i.i.d. data, as well as in the context of regression where Bickel [1]
and Newey [11] study the existence of adaptive and efficient regression estimators under
symmetric errors. The reader is referred to Chapter 6 of Horowitz [7] for a nice review of
transformations in regression and other related models. Lately the symmetry assumption
has also been invoked for the consistency and efficiency of the quasi maximum likelihood
estimator (QMLE) in GARCH models; see González–Rivera and Drost [6] and Newey
and Steigerwald [12]. Finally, we mention that power transformations have recently
been used by Savchuk and Schick [16] in order to improve the rate of convergence of the
classical Parzen-Rosenblatt (Parzen [13]; Rosenblatt [15]) estimator of the probability
density function.

The purpose of this paper is to suggest a procedure by means of which a sample from
an unknown distribution is reduced to a sample from a symmetric distribution. To this
end we employ the notion of the probability weighted empirical characteristic function
(PWECF), introduced recently in Meintanis et al. [10]. However, the PWECF used
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in Meintanis et al. [10] is defined in an entirely parametric context and it is therefore
not appropriate when pursuing nonparametric inference. In what follows we suggest a
nonparametric version of the PWECF and use this quantity in order to estimate the
parameters of a transformation to symmetry. The remainder of this work is outlined
as follows. In Section 2 we recall some properties of the PWCF and the nonparametric
PWECF is introduced. In Section 3 we introduce the new estimation procedure which
is based on an appropriate functional of this PWECF; the method is related to those
in Yeo and Johnson [21] and Yeo et al. [22]. The strong consistency of our estimator
is given in Section 4, while in Section 5 the finite–sample properties of the method are
investigated by means of a simulation study. A real data example is included in Section 6
while some auxiliary results and their proofs are deferred to the Appendix.

2. THE NONPARAMETRIC PWECF

Let X denote an arbitrary random variable with an absolutely continuous distribution
function F (x) = P(X ≤ x). For γ ≥ 0, the probability weighted characteristic function
(PWCF) of X is defined by

ϕ(t; γ) := E
[
W (X; γt)eitX

]
=
∫ ∞
−∞

W (x; γt)eitxdF (x), t ∈ R, (2.1)

where W (x; s) := [F (x)(1−F (x))]|s|. It is noteworthy that the PWCF of X has various
useful properties similar to those of the characteristic function (CF) of X, see Meintanis
et al. [10]; in particular, a distribution function which is symmetric around zero must
yield a real-valued PWCF, see property P5 there, and this will be the basis of our
transformation procedure in Section 3. The fact that for γ > 0 the PWCF is no longer
a Fourier transform, however, makes it difficult to prove strong distributional results
such as a one-to-one correspondence between PWCFs and probability distributions.
Interestingly though, in the context of location-scale families, which was the original
framework of Meintanis et al. [10], we may state and prove such a result:

Proposition 2.1. Assume that F1 and F2 belong to some location-scale family, namely

∀x ∈ R, F1(σ1x+ µ1) = F2(σ2x+ µ2) = G(x)

where G is an absolutely continuous distribution function and µ1, µ2 ∈ R, σ1, σ2 > 0.
Then, for any γ > 0, F1 and F2 yield the same PWCF if and only if F1 = F2.

P r o o f . Let ϕµ,σ be the PWCF related to Fµ,σ(x) := G((x− µ)/σ). Since

ϕµ,σ(t; γ) =
∫ ∞
−∞

[Fµ,σ(x)(1− Fµ,σ(x))]γ|t|eitxdFµ,σ(x),

we get by the change of variables x = σy + µ:

ϕµ,σ(t; γ) =
∫ ∞
−∞

[G(y)(1−G(y))]γ|t|ei(σt)y+µdG(y) = eitµϕ0,1(σt; γ/σ).
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Assume now that F1 and F2 yield the same PWCF, with σ1 6= σ2. Then

eitµ1ϕ0,1(σ1t; γ/σ1) = eitµ2ϕ0,1(σ2t; γ/σ2), t ∈ R, (2.2)

which up to reparametrization is equivalent to

ϕ0,1(T ; Γ) = eitMϕ0,1(cT ; Γ/c), T ∈ R,

for some M ∈ R, c 6= 1 and Γ > 0. Without loss of generality, we assume in what follows
that c > 1; in this case, a straightforward proof by induction shows that for any positive
integer m:

|ϕ0,1(T ; Γ)| = |ϕ0,1(cmT ; Γ/cm)|, T ∈ R.

Observe now that ϕ0,1(0; Γ) = 1 and for any T > 0,

ϕ0,1(cmT ; Γ/cm) =
∫ ∞
−∞

[G(y)(1−G(y))]Γ|T |ei(c
mT )yg(y) dy

=
1
T

∫ ∞
−∞

[G(z/T )(1−G(z/T ))]Γ|T |g(z/T )eic
mz dz

where g is the probability density function related to G. The right-hand side is, up to a
constant, the Fourier transform of the integrable function

z 7→ [G(z/T )(1−G(z/T ))]Γ|T |g(z/T ),

evaluated at the point cm. Since cm → ∞ as m → ∞, the Riemann-Lebesgue lemma
states that this expression must converge to 0 as m→∞. As a conclusion,

ϕ0,1(0; Γ) = 1 and ϕ0,1(T ; Γ) = 0, T > 0.

This is a contradiction since T 7→ ϕ0,1(T ; Γ) is continuous, see property P7 in Meintanis
et al. [10]. Hence σ1 = σ2, and thus eitµ1 = eitµ2 for all t ∈ R by (2.2), which entails
µ1 = µ2. The proof is complete. �

Remark 2.2. The location–scale context may actually be dropped under additional
moment hypotheses, such as the existence of the moment-generating function of F1 and
F2 in a neighborhood of 0, by using analytic continuation. In any case, if the PWCF is
unique, it can be used to assess symmetry around zero: It is indeed clear that for any
t and γ, the PWCF of −X is equal to ϕ(−t; γ), and that ϕ(−t; γ) = ϕ(t; γ), where z
denotes the complex conjugate of z. Now if the PWCF of X is real-valued, this entails
ϕ(−t; γ) = ϕ(t; γ) and thus X and −X have the same PWCF, whence the fact that the
distribution function of X is symmetric around zero.

While Meintanis et al. [10] estimated the PWCF in a parametric way, it is interesting to
consider the case where F is completely unknown. In this context, it is a natural idea to
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define an estimator of the PWCF in an entirely nonparametric way. To this end notice
that the PWCF in (2.1) may be written as

ϕ(t; γ) =
∫ 1

0

[x(1− x)]γ|t|eitQ(x)dx, (2.3)

where Q(x) = inf{t ∈ R|F (t) ≥ x} denotes the quantile function of X.

In view of (2.3) we suggest the following nonparametric estimator of the PWCF:

ϕ̂n(t; γ) =
∫ 1

0

[x(1− x)]γ|t|eit bQn(x)dx, (2.4)

with Q̂n(x) denoting the empirical quantile function. We shall call ϕ̂n(t; γ) the prob-
ability weighted empirical characteristic function (PWECF), and for the purpose of
estimation we will use

∀k ∈ {1, ..., n}, ∀x ∈
(
k − 1
n

,
k

n

]
, Q̂n(x) = Xk:n,

where X1:n ≤ · · · ≤ Xn:n denote the order statistics corresponding to independent copies
X1, . . . , Xn of the random variable X.

3. L2–TYPE PROCEDURES FOR SYMMETRY TRANSFORMATION

The problem we shall consider is to estimate the parameters of a given transformation
which, if applied on the original nonsymmetrically distributed observations X1, . . . , Xn,
yields transformed observations that are approximately symmetrically distributed with
location zero. To this end, write ϑ = (δ, λ) ∈ Θ ⊂ R × Λ for the transformation
parameter–vector, where δ denotes location and λ denotes the shape parameter which
is assumed to lie in a subset Λ of the real line. For ϑ = (δ, λ) ∈ Θ, we let QZ(·;ϑ) be
the quantile function of the transformed random variable Z(ϑ) = ψ(X;λ)− δ, where ψ
is a specific transformation family, and we define

S(t; γ;ϑ) =
∫ 1

0

[x(1− x)]γ|t| sin(tQZ(x;ϑ)) dx,

the imaginary part of the PWCF of Z(ϑ). It is thus a consequence of Remark 1 that
if the transformed random variable Z has a symmetric distribution around zero then
S(t; γ;ϑ) = 0 for all t ∈ R, or equivalently

∫∞
−∞ S

2(t; γ;ϑ) dt = 0.

This observation is the basic idea we need to build our estimator: we introduce Zk(ϑ) =
ψ(Xk;λ)−δ, we let Q̂Z,n(x;ϑ) be the empirical quantile function related to Z1(ϑ), . . . , Zn(ϑ)
and we define

Ŝn(t; γ;ϑ) =
∫ 1

0

[x(1− x)]γ|t| sin(tQ̂Z,n(x;ϑ)) dx,

the imaginary part of the PWECF of Z1(ϑ), . . . , Zn(ϑ). Then Ŝn(t; γ;ϑ) is the empirical
counterpart of S(t; γ;ϑ). We suggest to estimate the true value ϑ0 = (δ0, λ0) (see
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Section 4 for a discussion of the uniqueness of this parameter) by ϑ̂n, where

ϑ̂n = arg min
ϑ∈Θ

∆n(γ;ϑ), with ∆n(γ; θ) =
∫ ∞
−∞
Ŝ2
n(t; γ;ϑ) dt. (3.1)

Remark 3.1. The PWCF ϕ(t; γ) and PWECF ϕ̂n(t; γ) of a random variable X are
such that |ϕ(t; γ)| ≤ (1/4)γ|t| and |ϕ̂n(t; γ)| ≤ (1/4)γ|t| for every (t, γ) ∈ R × R+. As a
consequence, for any ϑ, the integral ∆n(ϑ) is positive and finite.

Remark 3.2. Notice that while we write ϑ̂n, the estimator implicitly depends on the
value of γ and therefore we have essentially a family of estimators {ϑ̂n(γ), 0 < γ <∞}
indexed by γ.

Remark 3.3. Possible choices for the transformation family ψ are the Box-Cox trans-
formation (see Box and Cox [3]), a family introduced by Burbidge et al. [4] as well as
the recently introduced method of Yeo and Johnson [19]. Note that while the popular
Box-Cox transformation,

ψ(x;λ) =


xλ − 1
λ

if λ 6= 0,

log x if λ = 0,

applies only to positive random variables (if λ is not a nonzero integer), its modifications
suggested by Manly [9], John and Draper [8] and Bickel and Doksum [2] were designed
to allow negative values as well.

A favorable feature of the specific definition of the nonparametric PWECF in (2.4) is
that it leads to a criterion in (3.1) which is convenient from the computational point of
view. To see this notice that from (2.4) it is straightforward to compute the imaginary
part of the PWECF of Z1(ϑ), . . . , Zn(ϑ) as

Ŝn(t; γ;ϑ) =
n∑
k=1

υk,n(t; γ) sin(tZk:n(ϑ)) with υk,n(t; γ) =
∫ k/n

(k−1)/n

[x(1− x)]γ|t| dx.

Then the criterion statistic in (3.1) follows by direct calculation as

∆n(γ;ϑ) =
1
2

n∑
j,k=1

(
I−jk(γ;ϑ)− I+

jk(γ;ϑ)
)

where I−jk(γ;ϑ) := I(j, k; γ;Zj:n(ϑ)−Zk:n(ϑ)) and I+
jk(γ;ϑ) := I(j, k; γ;Zj:n(ϑ)+Zk:n(ϑ))

with

I(j, k; γ;x) =
∫ ∞
−∞

υj(t; γ)υk(t; γ) cos(tx) dt.
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4. STRONG CONSISTENCY OF THE ESTIMATOR

Here, we assume that γ > 0 and that the following hold:

(A1) The support D of the distribution of X is an open interval and F is continuous
and strictly increasing on D.

(A2) The transformation family ψ is such that (x, λ) 7→ ψ(x;λ) is continuous on
D ×Λ.

(A3) For all λ ∈ Λ, x 7→ ψ(x;λ) is strictly increasing.

Assumption (A2) is also used in Yeo and Johnson [20], while (A3) means that the
family of transformations preserves ordering: if two observations X1 and X2 are such
that X1 < X2, then the transformed observations ψ(X1;λ) and ψ(X2;λ) are such that
ψ(X1;λ) < ψ(X2;λ). In particular, in this setting, it is straightforward to show that

QZ(x;ϑ) = ψ(Q(x);λ)− δ and Q̂Z,n(x;ϑ) = ψ(Q̂n(x);λ)− δ. (4.1)

Under these assumptions, we may state a strong consistency result for our estimator:

Theorem 4.1. Assume that (A1), (A2) and (A3) hold. Let Θ be a compact subset of
R2 contained in R × Λ. If, over Θ, there exists a unique global minimum ϑ0 of the
function

ϑ 7→
∫ ∞
−∞
S2(t; γ;ϑ) dt

then ϑ̂n → ϑ0 almost surely.

P r o o f . By Lemma 6.2 in the Appendix,

Hn(ϑ) :=
∫ ∞
−∞
Ŝ2
n(t; γ;ϑ) dt→ H(ϑ) :=

∫ ∞
−∞
S2(t; γ;ϑ) dt

almost surely, uniformly in ϑ ∈ Θ. Recall that

S(t; γ;ϑ) =
∫ 1

0

[x(1− x)]γ|t| sin(tQZ(x;ϑ)) dx.

Because for any x the function ϑ 7→ QZ(x;ϑ) is continuous and the integrand in S(t; γ;ϑ)
is dominated by the constant 1, the dominated convergence theorem entails that for any t,
the function ϑ 7→ S(t; γ;ϑ) is continuous. Furthermore, since for any ϑ, |S(t; γ;ϑ)| ≤
(1/4)γ|t| by Remark 3.1, it is again a corollary of the dominated convergence theorem that
the function H is continuous as well. The same arguments apply to show that (Hn) is
a random sequence of continuous functions. Using Lemma 6.3 concludes the proof. �

The existence of a global minimum of the function ϑ 7→
∫∞
−∞ S

2(t; γ;ϑ) dt is for instance
guaranteed if there exists ϑ0 such that the distribution of Z(ϑ0) is symmetric around 0,
in which case S(t; γ;ϑ0) = 0 for each t and therefore

∀ϑ ∈ Θ,
∫ ∞
−∞
S2(t; γ;ϑ) dt ≥ 0 =

∫ ∞
−∞
S2(t; γ;ϑ0) dt.
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The uniqueness of one such ϑ0 is a more challenging problem. The following proposition
is a step towards solving this question for a large class of transformations, including
those mentioned in Remark 3.3.

Proposition 4.2. Assume that (A1) holds and that X has a positive median. Let ψ
be a family of transformations, satisfying (A2) and (A3), such that

∀x > 0, ∀λ > 0, ψ(x;λ) =
[f(x)]λ − 1

λ

where f is a positive, continuous and strictly increasing function on (0,∞). If there
exists a pair (δ, λ) ∈ R × (0,∞) such that ψ(X;λ) − δ is symmetrically distributed
around zero, then (δ, λ) is the unique such pair.

P r o o f . Since (A1) holds and X has a positive median, we have Q(x) > 0 for all x in
an open neighborhood U of 1/2. Define ϑ = (δ, λ); the monotonicity of f then yields
QZ(x;ϑ) = ψ(Q(x);λ) − δ for all x ∈ U . In particular, the median of Z(ϑ), which is
symmetrically distributed around zero, has to be 0 and thus 0 = [f ◦ Q(1/2)]λ − c(ϑ),
where c(ϑ) = 1 + δλ. In particular, c(ϑ) is positive and f ◦Q(1/2) = [c(ϑ)]1/λ. Besides,
it must hold that QZ(1/2 − s;ϑ) = −QZ(1/2 + s;ϑ) for any s ∈ (0, 1/2) which entails
for all ε > 0 small enough:

[f ◦Q(1/2− ε)]λ − 1
λ

− δ = −
[

[f ◦Q(1/2 + ε)]λ − 1
λ

− δ
]

or equivalently:

f ◦Q(1/2− ε) =
(
2c(ϑ)− [f ◦Q(1/2 + ε)]λ

)1/λ
. (4.2)

Assume now that there exist two pairs ϑ1 = (δ1, λ1) and ϑ2 = (δ2, λ2) such that Z(ϑ1)
and Z(ϑ2) are symmetrically distributed around zero. Note that it is enough to show
that λ1 = λ2. Using (4.2), we obtain for all ε > 0 sufficiently small:(

2c(ϑ1)− [f ◦Q(1/2 + ε)]λ1
)1/λ1 =

(
2c(ϑ2)− [f ◦Q(1/2 + ε)]λ2

)1/λ2
.

Since f ◦ Q(1/2) = [c(ϑ1)]1/λ1 = [c(ϑ2)]1/λ2 and the function f ◦ Q is continuous and
strictly increasing, this entails for all h > 0 small enough:(

2c(ϑ1)−
[
[c(ϑ1)]1/λ1 + h

]λ1
)1/λ1

=
(

2c(ϑ2)−
[
[c(ϑ2)]1/λ2 + h

]λ2
)1/λ2

.

Noting that [c(ϑ1)]1/λ1 = [c(ϑ2)]1/λ2 > 0, we get that for all h > 0 small enough:(
2− [1 + h]λ1

)1/λ1 =
(
2− [1 + h]λ2

)1/λ2
.

Taking logarithms and differentiating twice, we obtain for h > 0 sufficiently small:

(1 + h)λ1−2
[
2(λ1 − 1) + (1 + h)λ1

]
[2− (1 + h)λ1 ]2

=
(1 + h)λ2−2

[
2(λ2 − 1) + (1 + h)λ2

]
[2− (1 + h)λ2 ]2

.
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Letting h ↓ 0 entails λ1 = λ2, which completes the proof. �

We note that this result requires the median of X to be positive. For some families such
as the Bickel–Doksum family (see Bickel and Doksum [2]), also called the “signed power”
transformation family:

∀x ∈ R, ∀λ > 0, ψ(x;λ) =
sgn(x)|x|λ − 1

λ
, with sgn(x) =

 1 if x > 0,
−1 if x < 0,
0 if x = 0,

(4.3)

this assumption may actually be dropped, as shown by Corollary 4.3 below. This par-
ticular family of transformations, which coincides with the Box-Cox family of transfor-
mations for positive values of x and λ, is the one we shall consider in our simulation
study.

Corollary 4.3. Let ψ be the Bickel–Doksum family of transformations. Assume that
(A1) holds and that the distribution of X is not symmetric around zero. If there exists a
pair (δ, λ) ∈ R× (0,∞) such that ψ(X;λ)− δ is symmetrically distributed around zero,
then (δ, λ) is the unique such pair.

P r o o f . We first note that for any such pair ϑ = (δ, λ), then δ 6= −1/λ. If indeed
we had that δ = −1/λ, then using (4.3), the random variable sgn(X)|X|λ would be
symmetric. This would imply, for any x ≤ 0, that

P(X ≤ x) = P(sgn(X)|X|λ ≤ −(−x)λ) = P(sgn(X)|X|λ ≥ (−x)λ) = P(X ≥ −x).

Then X would be symmetrically distributed around zero, which is a contradiction. More-
over, we may assume without loss of generality that the median Q(1/2) of X is non-
negative: if indeed this is not the case then −X has a nonnegative median and, letting
δ′ = −(δ + 2/λ) 6= −1/λ, the random variable

ψ(−X;λ)− δ′ = −[ψ(X;λ)− δ]

is symmetrically distributed around zero. Finally, since (A1) holds and (A2) and (A3) are
satisfied for the Bickel–Doksum family, we have QZ(x;ϑ) = ψ(Q(x);λ)−δ by (4.1). Since
Z(ϑ) is symmetrically distributed around zero, we must have 0 = Q(1/2)λ − (1 + δλ).
Especially, the median Q(1/2) = (1 + δλ)1/λ of X is positive. Applying Proposition 4.2
concludes the proof. �

5. A MONTE-CARLO SIMULATION STUDY

5.1. Finite sample performance of the presented technique

In this section, we present the results of a Monte-Carlo study conducted to assess the
performance of our method. In what follows, the transformation family considered is
the Bickel–Doksum family (4.3). The following estimators are compared:

• our estimator (3.1), denoted by Mγ , with γ ∈ {1, 2};
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• the estimator

arg min
ϑ∈Θ

∫ ∞
−∞

[
1
n

n∑
k=1

sin(tZk(ϑ))

]2

e−|t|dt

which corresponds to using the ECF with an exponential weighting function (see
Yeo and Johnson [20]), and will be denoted by EECF;

• the Gaussian maximum likelihood estimator (GMLE), assuming that the target
symmetric distribution is Gaussian. While this estimator actually attempts to
transform to normality, we include it for comparative reasons. The shape estimator
is λ̂ and the location estimator is δ̂(λ̂) where

λ̂ = arg max
λ∈Λ

{
−n

2
log(σ̂2(λ))− 1

2

n∑
k=1

(ψ(Xk;λ)− δ̂(λ))2

σ̂2(λ)
+ (λ− 1)

n∑
k=1

log |Xk|

}

= arg max
λ∈Λ

{
−n

2
log(σ̂2(λ)) + (λ− 1)

n∑
k=1

log |Xk|

}

with

δ̂(λ) =
1
n

n∑
k=1

ψ(Xk;λ) and σ̂2(λ) =
1
n

n∑
k=1

(ψ(Xk;λ)− δ̂(λ))2.

To get a grasp of how these estimators behave in practice, we use the following gen-
erating algorithm: for a given n−independent sample Y1, . . . , Yn of random copies of a
symmetric random variable Y , we pick (known) values of λ and δ and we consider the
n−independent sample X1, . . . , Xn such that Xk = τ(Yk + δ;λ) where

τ(y;λ) = sgn(λy + 1)|λy + 1|1/λ

is the inverse of the Bickel–Doksum transformation. With this notation, we thus have
ψ(Xk;λ)− δ = Yk which are symmetric random variables and we may apply our various
procedures to assess the quality of the estimation of λ and δ in each case. In what
follows, λ is picked in the set {1/4, 1/2, 3/4}, δ = 1 and the symmetric distributions
considered are the following:

• Y = W exp(hW 2/2) with W standard normal, namely Y follows a Tukey(0, h)
distribution. The higher is h, the higher is the kurtosis of Y . When h = 0, Y is
standard Gaussian, denoted by N(0, 1);

• Y |V = v is Gaussian centered with variance v, where V is Gamma distributed with
shape parameter k > 0 and unit scale. This distribution is denoted by Variance
Γ(k, 1);

• Y follows a symmetric stable distribution with shape parameter α, location pa-
rameter zero and unit scale. This distribution is denoted by Stable(α, 0, 1).

In each case, the estimation is carried out on 1000 samples of size n = 100 and we
compute the mean L1−error (i. e. the mean absolute deviation) related to λ̂ and δ̂. We
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display in Table 1 the mean L1−error for λ and δ as well as the standard deviation of
the estimates.

It appears from these tables that our Mγ estimator performs fairly well in all cases for
both values of γ. In particular, it performs better than the EECF method at estimating
λ, and equally well at estimating δ except when the tail is very heavy as is the case for the
Stable(1, 0, 1) distribution. Furthermore, while the GMLE method appears superior at
estimating λ when the tail is light or when the distribution is leptokurtic, our technique
is comparable to and sometimes better than this method when λ ≥ 1/2 and the tail is
heavy (for instance, the stable distribution) or if the distribution is platykurtic (as is
the case for the Tukey(0, 3/4) distribution). Finally, it can be seen by computing the
sum of the mean L1−errors that overall, our technique competes well with the GMLE
method and outperforms the EECF technique. In this connection we would like to stress
that our method does not involve the choice of a weighting function unlike what must
be done when using the conventional ECF.

We conclude this section by highlighting how our technique may be used prior to a
statistical analysis of a data set. The context is the following: We assume that we
observe a sample of independent copies (X1, Z1), . . . , (Xn, Zn) of a random pair (X,Z)
such that for some (λ, δ):

ψ(X;λ)− δ = m0 +m1Z + ε

where ψ is a given family of transformations, m0, m1 ∈ R and (Z, ε) are such that Z
and ε are two independent random variables which both possess symmetric around zero
distributions. The goal is to estimate the parameters m0 and m1. In the framework of
linear regression, one can think of m0 as the intercept and m1 as the slope, Z is the
regressor and ε is the random error. For a nice account of transformations in the context
of regression the reader is referred to Chen et al. [5]. Of course, a first, crucial task is
to estimate (λ, δ) as accurately as possible so as to recover enough information on the
hidden regression setting. Note that

ψ(X;λ)− (δ +m0) = m1Z + ε

so that without loss of generality, we may assume that the intercept m0 is zero. Observe
then that the right-hand side is a symmetric random variable, which makes it possible
to implement our method in order to estimate (λ, δ). A possible procedure is as follows:

1. estimate (λ, δ) by a symmetry procedure, such as our PWECF–based technique or
the GMLE;

2. if (λ̂, δ̂) is the estimate, compute the transformed observations Ŷk = ψ(Xk; λ̂)− δ̂;

3. choose an estimation procedure for the regression parameters (m0,m1), such as
ordinary least squares (OLS) and use the random pairs (Zk, Ŷk) for the estimation.

In fact, a robust method such as the Theil–Sen estimator (Theil [18]; Sen [17]), may be
preferred to the basic OLS estimator at the final step because nothing is known regarding
the moments of ε. In this connection, a small simulation study which we do not report
here tends to indicate that the Theil–Sen estimator combined with our technique works
better than the classical GMLE–OLS method under a heavy–tailed error distribution.
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6. REAL DATA EXAMPLES

In this section, we showcase our method on a set of real data. We consider the daily
closing values (pt) of the DAX index from October 1, 2007 to April 1, 2009, and our
data is the daily percentage of return rt = 100(pt/pt−1− 1) of size n = 378. During this
period of time, European markets generally followed a downward trend, so that we can
expect these percentages to have a left-skewed distribution.

We compare the results found with the M1 and M2 methods with what we find when
using the GMLE method. In Table 2, we summarize the results, along with the mean,
variance, skewness and kurtosis of the transformed data set (using the Bickel–Doksum
family) with the estimated parameters given by each method. Histograms of the raw
and transformed data sets are given in Figure 1.
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Fig. 1. DAX daily data set, top left: original data, top right: data

transformed with the parameters obtained by the M1 technique,

bottom left: data transformed with the parameters obtained by the

M2 technique, bottom right: data transformed with the parameters

obtained by the GMLE technique.
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Case λ = 1/4 M1 M2 EECF GMLE

N(0, 1)
0.112 (0.141) 0.104 (0.131) 0.116 (0.145) 0.0774 (0.0972)
0.124 (0.156) 0.120 (0.151) 0.119 (0.149) 0.105 (0.131)

Tukey(0, 3/4)
0.144 (0.199) 0.135 (0.195) 0.150 (0.183) 0.0853 (0.0635)
0.105 (0.138) 0.123 (0.162) 0.0873 (0.113) 0.507 (0.567)

Variance Γ(1, 1)
0.124 (0.151) 0.116 (0.143) 0.151 (0.181) 0.106 (0.128)
0.0807 (0.102) 0.0792 (0.100) 0.0848 (0.108) 0.0881 (0.112)

Variance Γ(4, 1)
0.0678 (0.0884) 0.0562 (0.0737) 0.0876 (0.114) 0.0390 (0.0504)
0.173 (0.220) 0.167 (0.213) 0.173 (0.218) 0.169 (0.212)

Stable(7/4, 0, 1)
0.132 (0.185) 0.125 (0.176) 0.142 (0.173) 0.131 (0.156)
0.117 (0.162) 0.113 (0.162) 0.111 (0.141) 0.124 (0.157)

Stable(1, 0, 1)
0.213 (0.156) 0.207 (0.203) 0.196 (0.0918) 0.110 (0.111)
0.140 (0.0979) 0.175 (0.125) 0.133 (0.0645) 0.336 (0.449)

Case λ = 1/2 M1 M2 EECF GMLE

N(0, 1)
0.133 (0.169) 0.121 (0.156) 0.140 (0.179) 0.0835 (0.105)
0.125 (0.160) 0.122 (0.156) 0.121 (0.153) 0.105 (0.129)

Tukey(0, 3/4)
0.146 (0.188) 0.147 (0.194) 0.212 (0.240) 0.191 (0.0891)
0.105 (0.135) 0.120 (0.161) 0.0778 (0.0976) 0.530 (0.438)

Variance Γ(1, 1)
0.147 (0.187) 0.138 (0.176) 0.207 (0.245) 0.126 (0.156)
0.0887 (0.113) 0.0871 (0.110) 0.100 (0.122) 0.0996 (0.122)

Variance Γ(4, 1)
0.0794 (0.116) 0.0601 (0.0776) 0.0974 (0.139) 0.0418 (0.0531)
0.159 (0.201) 0.169 (0.215) 0.165 (0.213) 0.166 (0.211)

Stable(7/4, 0, 1)
0.138 (0.175) 0.131 (0.163) 0.174 (0.212) 0.147 (0.184)
0.110 (0.141) 0.107 (0.136) 0.112 (0.142) 0.131 (0.168)

Stable(1, 0, 1)
0.222 (0.258) 0.231 (0.291) 0.420 (0.128) 0.201 (0.160)
0.200 (0.152) 0.264 (0.200) 0.0415 (0.0656) 0.266 (0.353)

Case λ = 3/4 M1 M2 EECF GMLE

N(0, 1)
0.153 (0.194) 0.138 (0.175) 0.169 (0.220) 0.0940 (0.119)
0.130 (0.168) 0.125 (0.161) 0.126 (0.161) 0.102 (0.129)

Tukey(0, 3/4)
0.155 (0.197) 0.155 (0.192) 0.239 (0.278) 0.308 (0.124)
0.103 (0.131) 0.111 (0.143) 0.0862 (0.107) 0.561 (0.389)

Variance Γ(1, 1)
0.167 (0.215) 0.155 (0.199) 0.243 (0.304) 0.136 (0.165)
0.0917 (0.115) 0.0885 (0.111) 0.108 (0.130) 0.101 (0.120)

Variance Γ(4, 1)
0.0824 (0.103) 0.0748 (0.0944) 0.101 (0.143) 0.0560 (0.0709)
0.184 (0.232) 0.182 (0.229) 0.180 (0.228) 0.178 (0.222)

Stable(7/4, 0, 1)
0.156 (0.201) 0.154 (0.195) 0.212 (0.263) 0.156 (0.195)
0.119 (0.155) 0.114 (0.146) 0.121 (0.150) 0.133 (0.170)

Stable(1, 0, 1)
0.282 (0.325) 0.273 (0.319) 0.545 (0.213) 0.307 (0.204)
0.201 (0.177) 0.215 (0.181) 0.0690 (0.0926) 0.233 (0.297)

Tab. 1. Mean L1−errors for the estimates; in each case, δ = 1, first

line: mean L1−errors for the parameter λ, second line: mean

L1−errors for the parameter δ. Between brackets: sample standard

deviation of the estimates.
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λ̂ δ̂ Mean Std. deviation Skewness Kurtosis
Raw data 1 −1 −0.148 2.208 0.641 8.702

M1 0.629 −1.756 0.00568 2.173 0.152 3.244
M2 0.611 −1.808 0.00883 2.196 0.142 3.086

GMLE 0.722 −1.541 0 2.101 0.221 4.193

Tab. 2. Estimated values of λ and δ for our real data set.

In Table 2, we see that in each case, the absolute value of the skewness of the transformed
data set is smaller than that of the raw data set. Note that while the value of the
skewness of the daily DAX data set is positive and thus seems to indicate a right-skewed
distribution, the 2% trimmed skewness is actually −0.292, which confirms that we have
a left-skewed data set. It is also interesting that the transformations yield transformed
data sets having lower kurtosis in all cases.

APPENDIX: AUXILIARY RESULTS AND THEIR PROOFS

The first lemma is a useful result of real analysis:

Lemma 6.1. Assume that H is a continuous real-valued function on E × E′, where E
and E′ are two subsets of R. Let K, K ′ be compact subsets of R which are contained in
E and E′ respectively. Then the family of functions x 7→ H(x;λ), λ ∈ K ′, is uniformly
equicontinuous on K, in the sense that

lim
h→0
h>0

sup
(x,λ)∈K×K′

sup
y∈K
|y−x|≤h

|H(y;λ)−H(x;λ)| = 0.

P r o o f . If the statement were false then one could find a sequence (xn, λn) ⊂ K ×K ′
and a sequence (yn) ⊂ K ′ such that |yn − xn| → 0 with

lim inf
n→∞

|H(yn;λn)−H(xn;λn)| > 0.

Since K and K ′ are compact subsets of R, we may assume, up to extracting a suitable
subsequence, that (xn, λn)→ (x∗, λ∗) ∈ K ×K ′. In particular, yn → x∗ as well. By the
continuity of H, |H(yn;λn)−H(xn;λn)| → 0, which is a contradiction. �

The second lemma is the cornerstone to prove Theorem 4.1.

Lemma 6.2. Assume that (A1), (A2) and (A3) hold. If K is a compact subset of R
contained in Λ then ∫ ∞

−∞
Ŝ2
n(t; γ;ϑ) dt→

∫ ∞
−∞
S2(t; γ;ϑ) dt

almost surely, uniformly in ϑ = (δ, λ) ∈ R×K as n→∞.
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P r o o f . Since |Ŝn(t; γ;ϑ)| ≤ 1, |S(t; γ;ϑ)| ≤ 1 and the imaginary part of a complex
number is less than its modulus, it is clear that for any ϑ,∫ ∞

−∞

∣∣∣Ŝ2
n(t; γ;ϑ)− S2(t; γ;ϑ)

∣∣∣dt ≤ 2
∫ ∞
−∞
|ϕ̂Z,n(t; γ;ϑ)− ϕZ(t; γ;ϑ)|dt

where ϕZ(·; γ;ϑ) and ϕ̂Z,n(·; γ;ϑ) are the PWCF and PWECF related to Z(ϑ). Pick
ε > 0; Remark 3.1 thus makes it possible to choose M > 0 such that for any ϑ:∫ ∞
−∞

∣∣∣Ŝ2
n(t; γ;ϑ)− S2(t; γ;ϑ)

∣∣∣dt ≤ ε

4
+ 2

∫ M

−M
|ϕ̂Z,n(t; γ;ϑ)− ϕZ(t; γ;ϑ)|dt

≤ ε

4
+ 4M sup

−M≤t≤M
|ϕ̂Z,n(t; γ;ϑ)− ϕZ(t; γ;ϑ)| .

(6.1)

Let ε′ = ε/(64M) > 0 and observe that for any t:

|ϕ̂Z,n(t; γ;ϑ)− ϕZ(t; γ;ϑ)| =
∣∣∣∣∫ 1

0

[x(1− x)]γ|t|
{
eit

bQZ,n(x;ϑ) − eitQZ(x;ϑ)
}

dx
∣∣∣∣

≤ ε

16M
+
∫ 1−ε′

ε′
[x(1− x)]γ|t|

∣∣∣eit bQZ,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣dx

≤ ε

16M
+ sup
ε′≤x≤1−ε′

∣∣∣eit bQZ,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ . (6.2)

Moreover∣∣∣eit bQZ,n(x;ϑ) − eitQZ(x;ϑ)
∣∣∣ =

∣∣∣∣∣it
∫ bQZ,n(x;ϑ)

QZ(x;ϑ)

eitzdz

∣∣∣∣∣ ≤ |t| ∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ . (6.3)

Collecting (6.1), (6.2) and (6.3) entails

sup
ϑ∈R×K

∫ ∞
−∞

∣∣∣Ŝ2
n(t; γ;ϑ)− S2(t; γ;ϑ)

∣∣∣ dt ≤ ε

2
+ 4M2 sup

ε′≤x≤1−ε′
ϑ∈R×K

∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ .

We thus get by using (4.1):

sup
ε′≤x≤1−ε′
ϑ∈R×K

∣∣∣Q̂Z,n(x;ϑ)−QZ(x;ϑ)
∣∣∣ ≤ sup

ε′≤x≤1−ε′
λ∈K

∣∣∣ψ(Q̂n(x);λ)− ψ(Q(x);λ)
∣∣∣ .

It is then enough to show that the supremum on the right-hand side of this inequality
converges to 0 almost surely. To this end, we note that since the function F is continuous
and strictly increasing on D, so is Q on (0, 1). Especially, Q maps the interval [ε′, 1− ε′]
onto a compact interval I ( D. Moreover, since with probability 1, Q̂n is a nondecreasing
sequence of functions which converges pointwise to the continuous function Q on (0, 1),
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by a well-known result due to Pólya (see e. g. Problem 127 p.270 in Pólya and Szegő [14])
the convergence must be uniform on compact intervals contained in (0, 1); in particular

sup
ε′≤x≤1−ε′

|Q̂n(x)−Q(x)| → 0 almost surely,

which entails that there is a compact interval J ( D such that with probability 1, we
have Q̂n(x) ∈ J for any x ∈ [ε′, 1 − ε′] if n is large enough. As a consequence, for any
positive integer N , we have with probability 1

sup
ε′≤x≤1−ε′

λ∈K

∣∣∣ψ(Q̂n(x);λ)− ψ(Q(x);λ)
∣∣∣ ≤ sup

(z,λ)∈J×K
sup
y∈J

|y−z|≤1/N

|ψ(y;λ)− ψ(z;λ)|

for n large enough. By Lemma 6.1, the right-hand side can be made arbitrarily small as
N →∞, which concludes the proof. �

The last lemma is a classical result (see Lemma 2 in Yeo and Johnson [20]) which
essentially states that under some conditions, if a sequence of random functions (Hn)
converges to a (nonrandom) function H which has a unique minimum x∗, then the
sequence of the minima of the (Hn) converges to x∗.

Lemma 6.3. Assume that (Hn) is a random sequence of continuous functions on a
compact metric space E such that

• (Hn) converges uniformly almost surely to a continuous function H on E;

• H has a unique global minimum x∗.

Then if (xn) is any sequence such that xn = arg minx∈E Hn(x), it holds that xn → x∗

almost surely.

P r o o f . If the result were false, we could find a set A with positive probability such
that on A, (xn) fails to converge to x∗ but (Hn) converges uniformly almost surely to
H on E. Choose ω ∈ A and define yn = xn(ω), hn = Hn(·;ω). The compactness of
E would entail that one could find a subsequence of (yn) which converges to x0 6= x∗.
Since hn(yn) ≤ hn(x∗) and

|hn(yn)−H(x0)| ≤ |hn(yn)−H(yn)|+ |H(yn)−H(x0)|

we would obtain in the limit H(x0) ≤ H(x∗), which is a contradiction. �

ACKNOWLEDGEMENTS

The authors acknowledge the editor and two anonymous referees for their helpful comments
which led to significant enhancements of this article. The work of Simos Meintanis was sup-
ported by grant Nr.11699 of the Special Account for Research Grants (ELKE) of the National
and Kapodistrian University of Athens.

(Received November 17, 2014)



586 S.G. MEINTANIS AND G. STUPFLER

R E F E R E N C E S

[1] P. J. Bickel: On adaptive estimation. Ann. Statist. 10 (1982), 647–671.
DOI:10.1214/aos/1176345863

[2] P. J. Bickel and K. A. Doksum: An analysis of transformations revisited. J. Amer. Statist.
Assoc. 76 (1981), 296–311. DOI:10.1080/01621459.1981.10477649

[3] G. E. P. Box and D. R. Cox: An analysis of transformations. J. Roy. Statist. Soc. B 26
(1964), 211–243.

[4] J. B. Burbidge, L. Magee, and A. L. Robb: Alternative transformations to handle extreme
values of the dependent variable. J. Amer. Statist. Assoc. 83 (1988), 123–127.

[5] G. Chen, R. Lockhart, and M. A. Stephens: Box–Cox transformations in linear models:
large sample theory and tests for normality (with discussion). Canad. J. Statist. 30 (2002),
1–59.
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