Previous |  Up |  Next

Article

Keywords:
compositional expression; compositional model; marginalization; syntax tree
Summary:
In the framework of models generated by compositional expressions, we solve two topical marginalization problems (namely, the single-marginal problem and the marginal-representation problem) that were solved only for the special class of the so-called “canonical expressions”. We also show that the two problems can be solved “from scratch” with preliminary symbolic computation.
References:
[1] Aho, A. V., Hopcroft, J. E., Ullman, J. D.: Data Structures and Algorithms. Addison-Wesley Pub. Co, Reading 1987. MR 0666695 | Zbl 0487.68005
[2] Aji, S. M., McEliece, R.-J.: The generalized distributive law. IEEE Trans. Inform. Theory 46 (2000), 325-343. DOI 10.1109/18.825794 | MR 1748973 | Zbl 0998.65146
[3] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30 (1983), 479-513. DOI 10.1145/2402.322389 | MR 0709830 | Zbl 0624.68087
[4] Bína, V., Jiroušek, R.: Marginalization in multidimensional compositional models. Kybernetika 42 (2006), 405-422. MR 2280521 | Zbl 1249.65010
[5] Gaubert, S., Plus, Max: Methods and applications of (max, +) linear algebra. In: Proc. XIV Symp. on Theoretical Aspects of Computer Science Hansestatdt Luebeck 1997. DOI 10.1007/bfb0023465
[6] Jiroušek, R.: Composition of probability measures on finite spaces. In: Proc. XIII International Conf. on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.), Morgan Kaufmann, San Francisco 1997, pp. 274-281.
[7] Jiroušek, R.: Marginalization in composed probabilistic models. In: Proc. XVI International Conf. on Uncertainty in Artificial Intelligence, (C. Boutilier and M. Goldszmidt, eds.), Morgan-Kauffmann Pub., San Francisco 2000, vol. C, pp. 301-308. DOI 10.1016/b978-1-4832-1451-1.50041-x
[8] Jiroušek, R.: Decomposition of multidimensional distributions represented by perfect sequences. Ann. Math. Artif. Intelligence 5 (2002), 215-226. DOI 10.1023/a:1014591402750 | MR 1899952 | Zbl 1004.60010
[9] Jiroušek, R.: Foundations of compositional model theory. Int. J. General Systems 40 (2011), 623-678. DOI 10.1080/03081079.2011.562627 | MR 2817988 | Zbl 1252.68285
[10] Jiroušek, R.: Local computations in Dempster-Shafer theory of evidence. Int. J. Approx. Reasoning 53 (2012), 1155-1167. DOI 10.1016/j.ijar.2012.06.012 | MR 2971864 | Zbl 1266.68177
[11] Jiroušek, R.: On causal compositional models: simple examples. In: Proc. XIV International Conference on Information Processing and Management of Uncertainty in Knowledge-Bases Systems (IPMU 2014) (A. Laurent et al., eds.), Part I, CCIS 442, pp. 517-526. DOI 10.1007/978-3-319-08795-5_53
[12] Jiroušek, R., Kratochvíl, V.: Marginalization algorithm for compositional models. In: Proc. XI International Conference on Information Processing and Management of Uncertainty in Knowledge-Bases Systems (IPMU 2006) (B. Bouchon-Meunier and R.R. Yager, eds.), pp. 2300-2307.
[13] Jiroušek, R., Kratochvíl, V.: Foundations of compositional models: structural properties. Int. J. General Systems 44 (2015), 2-25. DOI 10.1080/03081079.2014.934370 | MR 3299901
[14] Jiroušek, R., Shenoy, P. P.: Compositional models in valuation-based systems. Int. J. Approx. Reasoning 55 (2014), 277-293. DOI 10.1016/j.ijar.2013.02.002 | MR 3133554 | Zbl 1252.68310
[15] Jiroušek, R., Vejnarová, J.: General framework for multidimensional models. Int. J. General Systems 18 (2003), 107-127. DOI 10.1002/int.10077 | Zbl 1029.68131
[16] Jiroušek, R., Vejnarová, J., Daniels, M.: Composition models of belief functions. In: Proc. V Symp. on Imprecise Probabilities and Their Applications (G. De Cooman, J. Vejnarová and M. Zaffalon, eds.), Action M Agency, Prague 2007, pp. 243-252.
[17] Kohlas, J.: Information algebras: generic structures for inference. Springer-Verlag, 2003. DOI 10.1007/978-1-4471-0009-6 | Zbl 1027.68060
[18] Kohlas, J., Pouly, M., Schneuwly, C.: Generic local computation. J. Comput. System Sciences 78 (2012), 348-369. DOI 10.1016/j.jcss.2011.05.012 | MR 2896367 | Zbl 1255.68156
[19] Kohlas, J., Schmid, J.: An algebraic theory of information: an introduction and survey. Information 5 (2014), 219-254. DOI 10.3390/info5020219
[20] Kohlas, J., Shenoy, P. P.: Computation in valuation algebras. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, Volume 5: Algorithms for Uncertainty and Defeasible Reasoning (J. Kohlas and S. Moral, eds.), Kluwer, Dordrecht 2000, pp. 5-39. DOI 10.1007/978-94-017-1737-3_2 | MR 1928265 | Zbl 1015.68196
[21] Kohlas, J., Wilson, N.: Semiring induced valuation algebra: exact and approximate local computation algorithms. Artificial Intelligence 172 (2008), 1360-1399. DOI 10.1016/j.artint.2008.03.003 | MR 2422488
[22] Kratochvíl, V.: Probabilistic compositional models: solution of an equivalence problem. Int. J. Approx. Reasoning 54 (2013), 590-601. DOI 10.1016/j.ijar.2013.01.002 | MR 3041095
[23] Kschinschang, F. R., Frey, B. J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47 (2001), 498-519. DOI 10.1109/18.910572 | MR 1820474
[24] Lauritzen, S. L.: Graphical Models. Oxford University Press, Oxford 1996. DOI 10.1002/(sici)1097-0258(19991115)18:21<2983::aid-sim198>3.0.co;2-a | MR 1419991
[25] Litvinov, G. L., (eds.), S. N. Sergeev: Proc. of the International Workshop TROPICAL-07 on Tropical and Idempotent Mathematics. Contemporary Mathematics 495 (2007), American Mathematical Society. DOI 10.1090/conm/616 | MR 2581510
[26] Malvestuto, F. M.: A join-like operator to combine data cubes, and answer queries from multiple data cubes. ACM Trans. Database Syst. 39 (2014), 3, 1-31. DOI 10.1145/2638545 | MR 3268995
[27] Malvestuto, F. M.: Equivalence of compositional expressions and independence relations in compositional models. Kybernetika 50 (2014), 322-362. DOI 10.14736/kyb-2014-3-0322 | MR 3245534
[28] Malvestuto, F. M.: Erratum: Equivalence of compositional expressions and independence relations in compositional models. Kybernetika 51 (2015), 387-388. DOI 10.14736/kyb-2015-2-0387 | MR 3350569
[29] Speyer, D., Sturmfels, B.: Tropical mathematics. Mathematics Magazine 82 (2009), 163-173. DOI 10.4169/193009809x468760 | MR 2522909 | Zbl 1227.14051
Partner of
EuDML logo