[2] Cabré, X., Fontich, E., Llave, R. de la:
The parameterization method for invariant manifolds II: Regularity with respect to parameters. Indiana Univ. Math. J. 52 (2003), 329-360.
MR 1976080 |
Zbl 1034.37017
[4] Castelli, R., Lessard, J.-P.:
A method to rigorously enclose eigenpairs of complex interval matrices. Internat. Conf. Appl. Math. In Honor of the 70th Birthday of K. Segeth Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague (2013), 21-31.
MR 3204427
[5] Castelli, R., Lessard, J.-P.:
Rigorous numerics in Floquet theory: computing stable and unstable bundles of periodic orbits. SIAM J. Appl. Dyn. Syst. (electronic only) 12 (2013), 204-245.
DOI 10.1137/120873960 |
MR 3032858 |
Zbl 1293.37033
[6] Castelli, R., Lessard, J.-P., James, J. D. Mireles:
Parameterization of invariant manifolds for periodic orbits I: Efficient numerics via the Floquet normal form. SIAM J. Appl. Dyn. Syst. (electronic only) 14 (2015), 132-167.
DOI 10.1137/140960207 |
MR 3304254
[9] Hungria, A., Lessard, J.-P., James, J. D. Mireles: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. (to appear) in Math. Comput. (2015).
[10] Lessard, J.-P., James, J. D. M., Reinhardt, C.:
Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields. J. Dyn. Differ. Equations 26 (2014), 267-313.
DOI 10.1007/s10884-014-9367-0 |
MR 3207723
[11] James, J. D. Mireles, Mischaikow, K.:
Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. SIAM J. Appl. Dyn. Syst. (electronic only) 12 (2013), 957-1006.
DOI 10.1137/12088224X |
MR 3068557
[13] Yakubovich, V. A., Starzhinskij, V. M.:
Linear Differential Equations with Periodic Coefficients, Vol. 1, 2. Wiley, New York Halsted, Jerusalem (1975).
MR 0364740 |
Zbl 0308.34001