[1] Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W. G., Fortin, M., Dompierre, J., Vallet, M.-G.:
Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver- independent CFD. II. Structured grids. Int. J. Numer. Methods Fluids 39 (2002), 657-673.
DOI 10.1002/fld.356 |
MR 1911881 |
Zbl 1101.76350
[6] Clavero, C., Gracia, J. L., Jorge, J. C.:
A uniformly convergence alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems. IMA J. Numer. Anal. 26 (2006), 155-172.
DOI 10.1093/imanum/dri029 |
MR 2193974
[10] Dolejší, V.: ANGENER---software package. Charles University Prague, Faculty of Mathematics and Physics, 2000. www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm}.
[15] Dolejší, V., Roos, H.-G.:
BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space. Neural Parallel Sci. Comput. 18 (2010), 221-235.
MR 2722205
[20] Loseille, A., Alauzet, F.:
Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49 (2011), 38-60.
DOI 10.1137/090754078 |
MR 2764420
[21] Loseille, A., Alauzet, F.:
Continuous mesh framework part II: validations and applications. SIAM J. Numer. Anal. 49 (2011), 61-86.
DOI 10.1137/10078654X |
MR 2764421
[24] Schwab, C.:
$p$- and $hp$-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation Clarendon Press, Oxford (1998).
MR 1695813 |
Zbl 0910.73003
[25] Šolín, P.:
Partial Differential Equations and the Finite Element Method. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts John Wiley & Sons, Hoboken (2006).
MR 2180081
[27] Sun, S.:
Discontinuous Galerkin methods for reactive transport in porous media. Ph.D. thesis, The University of Texas, Austin (2003).
MR 2705499