Previous |  Up |  Next

Article

Title: Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm (English)
Author: Dolejší, Vít
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 6
Year: 2015
Pages: 597-616
Summary lang: English
.
Category: math
.
Summary: We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken $H^1$-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches. (English)
Keyword: $hp$-methods
Keyword: anisotropic mesh adaptation
Keyword: interpolation error estimates
MSC: 65D05
MSC: 65N15
MSC: 65N50
idZBL: Zbl 06537664
idMR: MR3436564
DOI: 10.1007/s10492-015-0113-7
.
Date available: 2015-11-17T20:28:41Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144448
.
Reference: [1] Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W. G., Fortin, M., Dompierre, J., Vallet, M.-G.: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver- independent CFD. II. Structured grids.Int. J. Numer. Methods Fluids 39 (2002), 657-673. Zbl 1101.76350, MR 1911881, 10.1002/fld.356
Reference: [2] Aubry, R., Löhner, R.: Generation of viscous grids at ridges and corners.Int. J. Numer. Methods Eng. 77 (2009), 1247-1289. Zbl 1156.76432, 10.1002/nme.2446
Reference: [3] Babuška, I., Suri, M.: The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties.SIAM Rev. 36 (1994), 578-632. Zbl 0813.65118, MR 1306924, 10.1137/1036141
Reference: [4] Cao, W.: Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements.SIAM J. Sci. Comput. 29 (2007), 756-781. Zbl 1136.65100, MR 2306267, 10.1137/050634700
Reference: [5] Cao, W.: An interpolation error estimate in $\mathcal R^2$ based on the anisotropic measures of higher order derivatives.Math. Comput. 77 (2008), 265-286. Zbl 1149.65010, MR 2353953, 10.1090/S0025-5718-07-01981-3
Reference: [6] Clavero, C., Gracia, J. L., Jorge, J. C.: A uniformly convergence alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems.IMA J. Numer. Anal. 26 (2006), 155-172. MR 2193974, 10.1093/imanum/dri029
Reference: [7] Dawson, C., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport.Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. Zbl 1067.76565, MR 2055253, 10.1016/j.cma.2003.12.059
Reference: [8] Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic $hp$-adaptivity.J. Sci. Comput. 17 (2002), 117-142. Zbl 0999.65121, MR 1910555, 10.1023/A:1015192312705
Reference: [9] Dolejší, V.: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes.Comput. Vis. Sci. 1 (1998), 165-178. Zbl 0917.68214, MR 1839196, 10.1007/s007910050015
Reference: [10] Dolejší, V.: ANGENER---software package.Charles University Prague, Faculty of Mathematics and Physics, 2000. www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm}.
Reference: [11] Dolejší, V.: Analysis and application of the IIPG method to quasilinear nonstationary convection-diffusion problems.J. Comput. Appl. Math. 222 (2008), 251-273. Zbl 1165.65055, MR 2474628, 10.1016/j.cam.2007.10.055
Reference: [12] Dolejší, V.: {$hp$}-DGFEM for nonlinear convection-diffusion problems.Math. Comput. Simul. 87 (2013), 87-118. MR 3046879, 10.1016/j.matcom.2013.03.001
Reference: [13] Dolejší, V.: Anisotropic {$hp$}-adaptive method based on interpolation error estimates in the {$L^q$}-norm.Appl. Numer. Math. 82 (2014), 80-114. Zbl 1291.65340, MR 3212381, 10.1016/j.apnum.2014.03.003
Reference: [14] Dolejší, V., Felcman, J.: Anisotropic mesh adaptation for numerical solution of boundary value problems.Numer. Methods Partial Differ. Equations 20 (2004), 576-608. Zbl 1060.65125, MR 2060780, 10.1002/num.10104
Reference: [15] Dolejší, V., Roos, H.-G.: BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space.Neural Parallel Sci. Comput. 18 (2010), 221-235. MR 2722205
Reference: [16] Frey, P. J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations.Comput. Methods Appl. Mech. Eng. 194 (2005), 5068-5082. Zbl 1092.76054, MR 2163554, 10.1016/j.cma.2004.11.025
Reference: [17] John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review.Comput. Methods Appl. Mech. Eng. 196 (2007), 2197-2215. Zbl 1173.76342, MR 2302890, 10.1016/j.cma.2006.11.013
Reference: [18] Knopp, T., Lube, G., Rapin, G.: Stabilized finite element methods with shock capturing for advection-diffusion problems.Comput. Methods Appl. Mech. Eng. 191 (2002), 2997-3013. Zbl 1001.76058, MR 1903196, 10.1016/S0045-7825(02)00222-0
Reference: [19] Laug, P., Borouchaki, H.: BL2D-V2: isotropic or anisotropic 2D mesher. INRIA, 2002. https://www.rocq.inria.fr/gamma/Patrick.Laug/logiciels/bl2d-v2/INDEX.html..
Reference: [20] Loseille, A., Alauzet, F.: Continuous mesh framework part I: well-posed continuous interpolation error.SIAM J. Numer. Anal. 49 (2011), 38-60. MR 2764420, 10.1137/090754078
Reference: [21] Loseille, A., Alauzet, F.: Continuous mesh framework part II: validations and applications.SIAM J. Numer. Anal. 49 (2011), 61-86. MR 2764421, 10.1137/10078654X
Reference: [22] Mirebeau, J.-M.: Optimal meshes for finite elements of arbitrary order.Constr. Approx. 32 (2010), 339-383. Zbl 1202.65015, MR 2677884, 10.1007/s00365-010-9090-y
Reference: [23] Mirebeau, J.-M.: Optimally adapted meshes for finite elements of arbitrary order and {$W^{1,p}$} norms.Numer. Math. 120 (2012), 271-305. Zbl 1238.65116, MR 2874967, 10.1007/s00211-011-0412-1
Reference: [24] Schwab, C.: $p$- and $hp$-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics.Numerical Mathematics and Scientific Computation Clarendon Press, Oxford (1998). Zbl 0910.73003, MR 1695813
Reference: [25] Šolín, P.: Partial Differential Equations and the Finite Element Method.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts John Wiley & Sons, Hoboken (2006). MR 2180081
Reference: [26] Šolín, P., Demkowicz, L.: Goal-oriented $hp$-adaptivity for elliptic problems.Comput. Methods Appl. Mech. Eng. 193 (2004), 449-468. Zbl 1044.65082, MR 2033961, 10.1016/j.cma.2003.09.015
Reference: [27] Sun, S.: Discontinuous Galerkin methods for reactive transport in porous media.Ph.D. thesis, The University of Texas, Austin (2003). MR 2705499
Reference: [28] Vejchodský, T., Šolín, P., Zítka, M.: Modular {$hp$}-FEM system HERMES and its application to Maxwell's equations.Math. Comput. Simul. 76 (2007), 223-228. Zbl 1157.78356, MR 2392482, 10.1016/j.matcom.2007.02.001
Reference: [29] Zienkiewicz, O. C., Wu, J.: Automatic directional refinement in adaptive analysis of compressible flows.Int. J. Numer. Methods Eng. 37 (1994), 2189-2210. Zbl 0810.76045, MR 1285070, 10.1002/nme.1620371304
.

Files

Files Size Format View
AplMat_60-2015-6_1.pdf 819.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo