Title:
|
Anisotropic $hp$-adaptive method based on interpolation error estimates in the $H^1$-seminorm (English) |
Author:
|
Dolejší, Vít |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
60 |
Issue:
|
6 |
Year:
|
2015 |
Pages:
|
597-616 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken $H^1$-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches. (English) |
Keyword:
|
$hp$-methods |
Keyword:
|
anisotropic mesh adaptation |
Keyword:
|
interpolation error estimates |
MSC:
|
65D05 |
MSC:
|
65N15 |
MSC:
|
65N50 |
idZBL:
|
Zbl 06537664 |
idMR:
|
MR3436564 |
DOI:
|
10.1007/s10492-015-0113-7 |
. |
Date available:
|
2015-11-17T20:28:41Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144448 |
. |
Reference:
|
[1] Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W. G., Fortin, M., Dompierre, J., Vallet, M.-G.: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver- independent CFD. II. Structured grids.Int. J. Numer. Methods Fluids 39 (2002), 657-673. Zbl 1101.76350, MR 1911881, 10.1002/fld.356 |
Reference:
|
[2] Aubry, R., Löhner, R.: Generation of viscous grids at ridges and corners.Int. J. Numer. Methods Eng. 77 (2009), 1247-1289. Zbl 1156.76432, 10.1002/nme.2446 |
Reference:
|
[3] Babuška, I., Suri, M.: The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties.SIAM Rev. 36 (1994), 578-632. Zbl 0813.65118, MR 1306924, 10.1137/1036141 |
Reference:
|
[4] Cao, W.: Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements.SIAM J. Sci. Comput. 29 (2007), 756-781. Zbl 1136.65100, MR 2306267, 10.1137/050634700 |
Reference:
|
[5] Cao, W.: An interpolation error estimate in $\mathcal R^2$ based on the anisotropic measures of higher order derivatives.Math. Comput. 77 (2008), 265-286. Zbl 1149.65010, MR 2353953, 10.1090/S0025-5718-07-01981-3 |
Reference:
|
[6] Clavero, C., Gracia, J. L., Jorge, J. C.: A uniformly convergence alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems.IMA J. Numer. Anal. 26 (2006), 155-172. MR 2193974, 10.1093/imanum/dri029 |
Reference:
|
[7] Dawson, C., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport.Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. Zbl 1067.76565, MR 2055253, 10.1016/j.cma.2003.12.059 |
Reference:
|
[8] Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic $hp$-adaptivity.J. Sci. Comput. 17 (2002), 117-142. Zbl 0999.65121, MR 1910555, 10.1023/A:1015192312705 |
Reference:
|
[9] Dolejší, V.: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes.Comput. Vis. Sci. 1 (1998), 165-178. Zbl 0917.68214, MR 1839196, 10.1007/s007910050015 |
Reference:
|
[10] Dolejší, V.: ANGENER---software package.Charles University Prague, Faculty of Mathematics and Physics, 2000. www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm}. |
Reference:
|
[11] Dolejší, V.: Analysis and application of the IIPG method to quasilinear nonstationary convection-diffusion problems.J. Comput. Appl. Math. 222 (2008), 251-273. Zbl 1165.65055, MR 2474628, 10.1016/j.cam.2007.10.055 |
Reference:
|
[12] Dolejší, V.: {$hp$}-DGFEM for nonlinear convection-diffusion problems.Math. Comput. Simul. 87 (2013), 87-118. MR 3046879, 10.1016/j.matcom.2013.03.001 |
Reference:
|
[13] Dolejší, V.: Anisotropic {$hp$}-adaptive method based on interpolation error estimates in the {$L^q$}-norm.Appl. Numer. Math. 82 (2014), 80-114. Zbl 1291.65340, MR 3212381, 10.1016/j.apnum.2014.03.003 |
Reference:
|
[14] Dolejší, V., Felcman, J.: Anisotropic mesh adaptation for numerical solution of boundary value problems.Numer. Methods Partial Differ. Equations 20 (2004), 576-608. Zbl 1060.65125, MR 2060780, 10.1002/num.10104 |
Reference:
|
[15] Dolejší, V., Roos, H.-G.: BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space.Neural Parallel Sci. Comput. 18 (2010), 221-235. MR 2722205 |
Reference:
|
[16] Frey, P. J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations.Comput. Methods Appl. Mech. Eng. 194 (2005), 5068-5082. Zbl 1092.76054, MR 2163554, 10.1016/j.cma.2004.11.025 |
Reference:
|
[17] John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review.Comput. Methods Appl. Mech. Eng. 196 (2007), 2197-2215. Zbl 1173.76342, MR 2302890, 10.1016/j.cma.2006.11.013 |
Reference:
|
[18] Knopp, T., Lube, G., Rapin, G.: Stabilized finite element methods with shock capturing for advection-diffusion problems.Comput. Methods Appl. Mech. Eng. 191 (2002), 2997-3013. Zbl 1001.76058, MR 1903196, 10.1016/S0045-7825(02)00222-0 |
Reference:
|
[19] Laug, P., Borouchaki, H.: BL2D-V2: isotropic or anisotropic 2D mesher. INRIA, 2002. https://www.rocq.inria.fr/gamma/Patrick.Laug/logiciels/bl2d-v2/INDEX.html.. |
Reference:
|
[20] Loseille, A., Alauzet, F.: Continuous mesh framework part I: well-posed continuous interpolation error.SIAM J. Numer. Anal. 49 (2011), 38-60. MR 2764420, 10.1137/090754078 |
Reference:
|
[21] Loseille, A., Alauzet, F.: Continuous mesh framework part II: validations and applications.SIAM J. Numer. Anal. 49 (2011), 61-86. MR 2764421, 10.1137/10078654X |
Reference:
|
[22] Mirebeau, J.-M.: Optimal meshes for finite elements of arbitrary order.Constr. Approx. 32 (2010), 339-383. Zbl 1202.65015, MR 2677884, 10.1007/s00365-010-9090-y |
Reference:
|
[23] Mirebeau, J.-M.: Optimally adapted meshes for finite elements of arbitrary order and {$W^{1,p}$} norms.Numer. Math. 120 (2012), 271-305. Zbl 1238.65116, MR 2874967, 10.1007/s00211-011-0412-1 |
Reference:
|
[24] Schwab, C.: $p$- and $hp$-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics.Numerical Mathematics and Scientific Computation Clarendon Press, Oxford (1998). Zbl 0910.73003, MR 1695813 |
Reference:
|
[25] Šolín, P.: Partial Differential Equations and the Finite Element Method.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts John Wiley & Sons, Hoboken (2006). MR 2180081 |
Reference:
|
[26] Šolín, P., Demkowicz, L.: Goal-oriented $hp$-adaptivity for elliptic problems.Comput. Methods Appl. Mech. Eng. 193 (2004), 449-468. Zbl 1044.65082, MR 2033961, 10.1016/j.cma.2003.09.015 |
Reference:
|
[27] Sun, S.: Discontinuous Galerkin methods for reactive transport in porous media.Ph.D. thesis, The University of Texas, Austin (2003). MR 2705499 |
Reference:
|
[28] Vejchodský, T., Šolín, P., Zítka, M.: Modular {$hp$}-FEM system HERMES and its application to Maxwell's equations.Math. Comput. Simul. 76 (2007), 223-228. Zbl 1157.78356, MR 2392482, 10.1016/j.matcom.2007.02.001 |
Reference:
|
[29] Zienkiewicz, O. C., Wu, J.: Automatic directional refinement in adaptive analysis of compressible flows.Int. J. Numer. Methods Eng. 37 (1994), 2189-2210. Zbl 0810.76045, MR 1285070, 10.1002/nme.1620371304 |
. |