[1] Ambrosetti, A., Malchiodi, A.:
Nonlinear analysis and semilinear elliptic problems. Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007.
MR 2292344 |
Zbl 1125.47052
[2] Antontsev, S.N., Rodrigues, J.F.:
A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. (2005), 515–545.
MR 2103951
[3] Antontsev, S.N., Rodrigues, J.F.:
On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36.
MR 2246902 |
Zbl 1117.76004
[4] Castro, A.: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas, 1980.
[9] Diening, L., Harjulehto, P., Hast"o, P., Ružička, M.:
Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Math., vol. 2017, Springer, New York, 2011.
MR 2790542
[10] Fan, X.L., Zhao, D.:
On the spaces $L^{p(x)}$ and $W^{m,p(x)}$. J. Math. Anal. Appl. 263 (2001), 424–446.
MR 1866056
[11] Kavian, O.:
‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques. Springer-Verlag, 1993.
Zbl 0797.58005
[12] Kirchhoff, G.: Mechanik. Teubner, Leipzig, Germany, 1883.
[13] Krasnoselskii, M.A.:
Topological methods in the theory of nonlinear integral equations. MacMillan, New York, 1964.
MR 0159197
[14] Peral, I.: Multiplicity of solutions for the p-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
[15] Rabinowitz, P. H.:
Minimax methods in critical point theory with applications to differential equations. Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984.
MR 0845785
[16] Ružička, M.:
Electro-rheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2000.
MR 1788852
[17] Triebel, H.:
Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978.
MR 0503903 |
Zbl 0387.46033