Previous |  Up |  Next

Article

Keywords:
analytic torsion; contact torsion; Chern-Simons theory; Sasakian three-manifold; quantum field theory
Summary:
This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.
References:
[1] Atiyah, M.F., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry, I. Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. DOI 10.1017/S0305004100049410 | MR 0397797 | Zbl 0297.58008
[2] Atiyah, M.F., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry, II. Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432. DOI 10.1017/S0305004100051872 | MR 0397798 | Zbl 0314.58016
[3] Beasley, C., Witten, E.: Non-abelian localization for Chern-Simons theory. J. Differential Geom. 70 (2005), 183–323. MR 2192257 | Zbl 1097.58012
[4] Belov, D. M., Moore, G.W.: Classification of abelian spin Chern-Simons theories. hep-th/0505235, (2005).
[5] Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, 2008. MR 2382957 | Zbl 1155.53002
[6] Braverman, M.: New proof of the Cheeger-Müller theorem. Ann. Global Anal. Geom. 23 (1) (2002), 77–92. DOI 10.1023/A:1021227705930 | MR 1952860
[7] Cheeger, J.: Analytic torsion and the heat equation. Ann. of Math. 109 (1979), 259–300. DOI 10.2307/1971113 | MR 0528965 | Zbl 0412.58026
[8] Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Comm. Math. Phys. 129 (1990), 486–522. DOI 10.1007/BF02096988 | MR 1048699 | Zbl 0703.58011
[9] Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Progr. Math., vol. 246, Birkhäuser, Basel, 2006. MR 2214654 | Zbl 1099.32008
[10] Furata, M., Steer, B.: Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points. Adv. Math. 96 (1) (1992), 38–102. DOI 10.1016/0001-8708(92)90051-L | MR 1185787
[11] Jeffrey, L.C., McLellan, B.D.K.: Non-abelian localization for $U(1)$ Chern-Simons theory. Geometric Aspects of Analysis and Mechanics, Conf. Proc. (in honour of the $65^{th}$ birthday of Hans Duistermaat), Birkhäuser, 2009. MR 2809473
[12] Kawasaki, T.: The Riemann-Roch theorem for complex V-manifolds. Osaka J. Math. 16 (1) (1979), 151–159. MR 0527023 | Zbl 0405.32010
[13] Kirk, P., Klassen, E.: Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of $T^{2}$. Comm. Math. Phys. 153 (3) (1993), 521–557. DOI 10.1007/BF02096952 | MR 1218931
[14] McLellan, B.D.K.: Localization in abelian Chern-Simons theory. J. Math. Phys. 54 (2013), arXiv:1208.1724[math-ph]. MR 3076394 | Zbl 1280.81102
[15] Müller, W.: Analytic torsion and R-torsion on Reimannian manifolds. Adv. Math. 28 (1978), 233–305. DOI 10.1016/0001-8708(78)90116-0
[16] Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, $\mu $-invariant and orientation reversing maps, Algebraic and geometric topology . Proc. Sympos., Univ. California, Santa Barbara, California, Lecture Notes in Math., 664, Springer, Berlin, (1978), 163–196, 1977. DOI 10.1007/BFb0061699 | MR 0518415
[17] Nicolaescu, L.I.: Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations. Comm. Anal. Geom. 8 (5) (2000), 1027–1096. DOI 10.4310/CAG.2000.v8.n5.a3 | MR 1846125 | Zbl 1001.58004
[18] Orlik, P.: Seifert Manifolds. Lecture Notes in Math., Springer-Verlag, Berlin, 1972. MR 0426001 | Zbl 0263.57001
[19] Orlik, P., Vogt, E., Zieschang, H.: Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten. Topology 6 (1967), 49–64. DOI 10.1016/0040-9383(67)90013-4 | MR 0212831 | Zbl 0147.23503
[20] Prasolov, V.V., Sossinsky, A.B.: Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology. Amer. Math. Soc. (1996), Vol. 154 of Translations of Mathematical Monographs. MR 1414898
[21] Ray, D., Singer, I.: Analytic torsion. Proc. Sympos. Pure Math. 23 (1973), 167–182. MR 0339293 | Zbl 0273.58014
[22] Reidemeister, K.: Überdeckungen von Komplexen. J. Reine Angew. Math. 173 (1935), 164–173. Zbl 0012.12604
[23] Rumin, M.: Formes différentielles sur les variétés de contact. J. Differential Geom. 39 (2) (1994), 281–330. MR 1267892 | Zbl 0973.53524
[24] Rumin, M., Seshadri, N.: Analytic torsions on contact manifolds. Ann. Inst. Fourier 62 (2012), 727–782. DOI 10.5802/aif.2693 | MR 2985515 | Zbl 1264.58027
[25] Schwarz, A.S.: The partition function of degenerate functional. Comm. Math. Phys. 67 (1979), 1–16. DOI 10.1007/BF01223197 | MR 0535228
[26] Williams, F.L.: Lectures on zeta functions, L-functions and modular forms with some physical applications. A window into zeta and modular physics, MSRI Publications, 2010. MR 2648361 | Zbl 1225.11105
[27] Witten, E.: Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), 661–692. MR 0683171 | Zbl 0499.53056
Partner of
EuDML logo