[2] Cuculescu, I., Theodorescu, R.:
Copulas: diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742.
MR 1929521 |
Zbl 1032.60009
[3] Dudek, W. A., Trokhimenko, V. S.:
Menger algebras of multiplace functions. Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian).
MR 2292134 |
Zbl 1115.08001
[4] Durante, F., Sempi, C.:
Copula theory: an introduction. In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31.
DOI 10.1007/978-3-642-12465-5_1 |
MR 3051261
[5] sciences, Encyclopedia of statistical: Vol. 2, second edition. Wiley 2006, pp. 1363-1367.
[7] Feller, W.:
An introduction to probability theory and its applications. Vol. II, second edition. Wiley, New York 1971.
MR 0270403
[8] Genest, C., MacKay, J.:
Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159.
DOI 10.2307/3314660 |
MR 0849869
[10] Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C.:
A characterization of quasicopulas. J. Multivariate Anal. 69 (1999), 193-205.
DOI 10.1006/jmva.1998.1809 |
MR 1703371
[11] Gluskin, L. M.:
Positional operatives. Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian).
MR 0164915 |
Zbl 0294.08001
[12] Gluskin, L. M.:
Positional operatives. Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian).
MR 0193040 |
Zbl 0294.08001
[13] Gluskin, L. M.:
Positional operatives. Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian).
MR 0240233 |
Zbl 0294.08001
[14] Hutchinson, T. P., Lai, C. D.:
Continuous bivariate distributions. Emphasising applications. Rumsby Scientific, Adelaide 1990.
MR 1070715 |
Zbl 1170.62330
[19] Kuczma, M.:
Functional equations in a single variable. Monografie Mat. 46, PWN, Warszawa 1968.
MR 0228862 |
Zbl 0725.39003
[20] Ling, C. H.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.
MR 0190575 |
Zbl 0137.26401
[21] McNeil, A. J., Nešlehová, J.:
Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059-3097.
DOI 10.1214/07-aos556 |
MR 2541455
[23] Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M.:
Multivariate Archimedean quasi-copulas. In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185.
DOI 10.1007/978-94-017-0061-0_19 |
MR 2058991 |
Zbl 1135.62338
[25] Stupňanová, A., Kolesárová, A.:
Associative $n$-dimensional copulas. Kybernetika 47 (2011), 93-99.
MR 2807866 |
Zbl 1225.03071