Previous |  Up |  Next

Article

Keywords:
fuzzy entropy; $g$-entropy; local entropy
Summary:
In this paper, a local approach to the concept of $g$-entropy is presented. Applying the Choquet`s representation Theorem, the introduced concept is stated in terms of $g$-entropy.
References:
[1] Brin, M., Katok, A.: On local entropy in geometric dynamics. Springer-Verlag, New York 1983 (Lecture Notes in Mathematics 1007) (1983), pp. 30-38. DOI 10.1007/bfb0061408 | MR 0730261
[2] Butnariu, D., Klement, E. P.: Triangular norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111-143. DOI 10.1016/0022-247x(91)90181-x | MR 1135265 | Zbl 0751.60003
[3] Dumitrescu, D.: Measure-preserving transformation and the entropy of a fuzzy partition. In: 13th Linz Seminar on Fuzzy Set Theory, Linz 1991, pp. 25-27.
[4] Dumitrescu, D.: Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 176 (1993), 359-373. DOI 10.1006/jmaa.1993.1220 | MR 1224152 | Zbl 0782.28012
[5] Dumitrescu, D.: Entropy of a fuzzy process. Fuzzy Sets and Systems 55 (1993), 169-177. DOI 10.1016/0165-0114(93)90129-6 | MR 1215137 | Zbl 0818.28008
[6] Dumitrescu, D.: Entropy of fuzzy dynamical systems. Fuzzy Sets and Systems 70 (1995), 45-57. DOI 10.1016/0165-0114(94)00245-3 | MR 1323286 | Zbl 0876.28029
[7] Markechová, D.: The entropy on F-quantum spaces. Math. Slovaca 40 (1990), 177-190. MR 1094772 | Zbl 0735.28011
[8] Markechová, D.: The entropy of fuzzy dynamical systems and generators. Fuzzy Sets and Systems 48 (1992), 351-363. DOI 10.1016/0165-0114(92)90350-d | MR 1178175 | Zbl 0754.60005
[9] Markechová, D.: Entropy of complete fuzzy partitions. Math. Slovaca 43 (1993), 1, 1-10. MR 1216263 | Zbl 0772.94002
[10] Markechová, D.: A note to the Kolmogorov-Sinaj entropy of fuzzy dynamical systems. Fuzzy Sets and Systems 64 (1994), 87-90. DOI 10.1016/0165-0114(94)90009-4 | MR 1281288 | Zbl 0845.93054
[11] McMillan, B.: The basic theorems of information theory. Ann. Math. Statist. 24 (1953), 196-219. DOI 10.1214/aoms/1177729028 | MR 0055621 | Zbl 0050.35501
[12] Mesiar, R., Rybárik, J.: Entropy of fuzzy partitions: A general model. Fuzzy Sets and Systems 99 (1998), 73-79. DOI 10.1016/s0165-0114(97)00024-9 | MR 1643178 | Zbl 0977.28015
[13] Rahimi, M., Riazi, A.: Entropy operator for continuous dynamical systems of finite topological entropy. Bull. Iranian Math. Soc. 38 (2012), 4, 883-892. MR 3028690
[14] Rahimi, M., Riazi, A.: On local entropy of fuzzy partitions. Fuzzy Sets and Systems 234 (2014), 97-108. DOI 10.1016/j.fss.2013.02.006 | MR 3128474
[15] Riečan, B.: On a type of entropy of dynamical systems. Tatra Mountains Math. Publ. 1 (1992), 135-140. MR 1230471 | Zbl 0794.58024
[16] Riečan, B.: On the $g$-entropy and its Hudetz correction. Kybernetika 38 (2002), 4, 493-500. DOI 10.1016/j.physa.2007.06.047 | MR 1937143 | Zbl 1265.94035
[17] Riečan, B., Markechová, D.: The entropy of fuzzy dynamical systems, general scheme and generators. Fuzzy Sets and Systems 96 (1998), 191-199. DOI 10.1016/s0165-0114(96)00266-7 | MR 1614814 | Zbl 0926.94012
[18] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer, Dordrecht and Ister, Bratislava 1997. DOI 10.1007/978-94-015-8919-2 | MR 1489521 | Zbl 0916.28001
[19] Rybárik, J.: The entropy of the Q-F-dynamical systems. Busefal 48 (1991), 24-26.
[20] Rybárik, J.: The entropy based on pseudoarithmetical operations. Tatra Mountains Math. Publ. 6 (1995), 157-164. MR 1363994
[21] Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32 (1977), 54-114. DOI 10.1070/rm1977v032n04abeh001639 | MR 0466791 | Zbl 0383.58011
[22] Phelps, R.: Lectures on Choquet's Theorem. Van Nostrand, Princeton, N.J. 1966. MR 0193470 | Zbl 0997.46005
[23] Ruelle, D.: An inequality for the entropy of differential maps. Bol. Soc. Bras. de Mat. 9 (1978), 83-87. DOI 10.1007/bf02584795 | MR 0516310
[24] Walters, P.: An Introduction to Ergodic Theory. Springer-Verlag, 1982. MR 0648108 | Zbl 0958.28011
Partner of
EuDML logo