Previous |  Up |  Next

Article

Keywords:
max-stable random field; dependence coefficients; extreme values
Summary:
Spatial environmental processes often exhibit dependence in their large values. In order to model such processes their dependence properties must be characterized and quantified. In this paper we introduce a measure that evaluates the dependence among extreme observations located in two disjoint sets of locations of $\mathbb{R}^2$. We compute the range of this new dependence measure, which extends the existing $\lambda$-madogram concept, and compare it with extremal coefficients, finding generalizations of the known relations in the pairwise approach. Estimators for this measure are introduced and asymptotic normality and strong consistency are shown. An application to the annual maxima precipitation in Portuguese regions is presented.
References:
[1] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. John Wiley 2004. DOI 10.1002/0470012382 | MR 2108013 | Zbl 1070.62036
[2] Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields. Dependence in Probability and Statistics 187 (2006), 373-390. DOI 10.1007/0-387-36062-x_17 | MR 2283264 | Zbl 1110.62130
[3] Coles, S. G.: Regional modelling of extreme storms via max-stable processes. J. Roy. Statist. Soc. B 55 (1993), 797-816. MR 1229882 | Zbl 0781.60041
[4] Haan, L. de: A spectral representation for max-stable proesses. Ann. Probab. 12 (1984), 1194-1204. DOI 10.1214/aop/1176993148 | MR 0757776
[5] Haan, L. de, Pickands, J.: Stationary min-stable stochastic processes. Probab. Theory Related Fields 72 (1986), 477-492. DOI 10.1007/bf00344716 | MR 0847381 | Zbl 0577.60034
[6] Fermanian, J. D., Radulovic, D., Wegkamp, M.: Weak convergence of empirical copula processes. Bernoulli 10 (2004), 847-860. DOI 10.3150/bj/1099579158 | MR 2093613 | Zbl 1068.62059
[7] Ferreira, H.: Dependence between two multivariate extremes. Statist. Probab. Lett. 81 (2011), 5, 586-591. DOI 10.1016/j.spl.2011.01.014 | MR 2772916 | Zbl 1209.62122
[8] Gilat, D., Hill, T.: One-sided refinements of the strong law of large numbers and the Glivenko-Cantelli Theorem. Ann. Probab. 20 (1992), 1213-1221. DOI 10.1214/aop/1176989688 | MR 1175259 | Zbl 0762.60025
[9] Krajina, A.: An M-Estimator of Multivariate Dependence Concepts. Tilburg University Press, Tilburg 2010.
[10] Naveau, P., Guillou, A., Cooley, D., Diebolt, J.: Modelling pairwise dependence of maxima in space. Biometrika 96 (2009), 1, 1-17. DOI 10.1093/biomet/asp001 | MR 2482131 | Zbl 1162.62045
[11] Neuhaus, G.: On the weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 4, 1285-1295. DOI 10.1214/aoms/1177693241 | MR 0293706
[12] Resnick, S. I.: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin 1987. DOI 10.1007/978-0-387-75953-1 | MR 0900810 | Zbl 1136.60004
[13] Ribatet, M.: A User's Guide to the Spatial Extremes Package. Unpublished, 2009. DOI 
[14] Schlather, M.: Models for stationary max-stable random fields. Extremes 5 (2002), 1, 33-44. DOI 10.1023/a:1020977924878 | MR 1947786 | Zbl 1035.60054
[15] Schlather, M., Tawn, J.: A dependece measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 (2003), 139-156. DOI 10.1093/biomet/90.1.139 | MR 1966556
[16] Smith, R. L.: Max-stable processes and spatial extremes. Unpublished manuscript, 1990. DOI 
[17] Smith, R. L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index. Technical Report, Department of Statistics, University of North Carolina 1996. DOI 
[18] Vaart, A. Van Der, Wellner, J. A.: Weak Convergence and Empirical Processes. Springer-Verlag, New York 1996. DOI 10.1007/978-1-4757-2545-2 | MR 1385671
[19] Vatan, P.: Max-infinite divisibility and max-stability in infinite dimensions. Probability in Banach Spaces V, Lect. Notes in Math. 1153 (1985), 400-425. DOI 10.1007/bfb0074963 | MR 0821994 | Zbl 0608.60008
[20] Zhang, Z., Smith, R. L.: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41 (2004), 4, 1113-1123. DOI 10.1239/jap/1101840556 | MR 2122805 | Zbl 1122.60052
[21] Zhang, Z., Smith, R. L.: On the estimation and application of max-stable processes. J. Statist. Planning Inference 140 (2010), 5, 1135-1153. DOI 10.1016/j.jspi.2009.10.014 | MR 2581117 | Zbl 1181.62150
Partner of
EuDML logo