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KYB ERNET IK A — VO LUME 5 1 ( 2 0 1 5 ) , NUMBER 2 , PAGES 1 9 3 – 2 1 1

GENERALIZED MADOGRAM AND PAIRWISE
DEPENDENCE OF MAXIMA OVER TWO REGIONS
OF A RANDOM FIELD

C. Fonseca, L. Pereira, H. Ferreira and A.P. Martins

Spatial environmental processes often exhibit dependence in their large values. In order to
model such processes their dependence properties must be characterized and quantified. In
this paper we introduce a measure that evaluates the dependence among extreme observations
located in two disjoint sets of locations of R2. We compute the range of this new depen-
dence measure, which extends the existing λ-madogram concept, and compare it with extremal
coefficients, finding generalizations of the known relations in the pairwise approach. Estimators
for this measure are introduced and asymptotic normality and strong consistency are shown.
An application to the annual maxima precipitation in Portuguese regions is presented.

Keywords: max-stable random field, dependence coefficients, extreme values

Classification: 60G70

1. INTRODUCTION

Natural models for spatial extremes, as observed in environmental, atmospheric and
geological sciences, are max-stable processes. These processes arise from an infinite-
dimensional generalization of extreme value theory and date back to de Haan [4], Vatan
[19] and de Haan and Pickands [5], who obtained, among other results, a spectral rep-
resentation of such processes. Max-stable processes can be, for example, good approxi-
mations for annual maxima of daily spatial rainfall (Smith [16], Coles [3], Schlather [14],
among others) and therefore have been widely applied to real data.

Briefly, a max-stable process Z = {Zx}x∈Rd is the limit process of maxima of inde-
pendent and identically distributed (i.i.d.) random fields Y

(i)
x , x ∈ IRd, i = 1, . . . , n.

Namely, for suitable an(x) > 0 and bn(x) ∈ IR,

Zx = lim
n→∞

∨n
i=1 Y

(i)
x − bn(x)
an(x)

, x ∈ IRd,

provided the limit exists, where
∨n

i=1 Y
(i)
x = max{Y (1)

x , . . . , Y
(n)
x }.

The distribution of (Zx1 , . . . , Zxk
) is a multivariate extreme value (MEV) distribution

G where its margins are univariate extreme value distribution functions themselves.
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We can assume, without loss of generality, that the margins of Z have a unit Fréchet
distribution, F (x) = exp(−x−1), x > 0 (Resnick [12]). This assumption on the margins
is particularly useful since the max-stable distribution G can then be written as

G(z) = exp(−V (z)), with z = (z1, . . . , zk) and zi ∈ IR+,

where V denotes the dependence function of the MEV distribution G, which is homo-
geneous of order −1, i. e., V (α z) = α−1V (z), z = (z1, . . . , zk), zi ∈ IR+, α > 0. Observe
that V (z) = ∞ as soon as zj = 0 for some j = 1, . . . , k. Also, since the margins of G are
unit Fréchet V (∞, . . . ,∞, zj ,∞, . . . ,∞) = z−1

j for all j = 1, . . . , k and 0 < zj < ∞.
The dependence function captures the multivariate dependence structure and the

scalar V (1), 1 = (1, . . . , 1) defines the extremal coefficient considered in Schlather and
Tawn [15] which measures the extremal dependence between the variables Zx1 , . . . , Zxk

.
This coefficient varies between 1 and k depending on the degree of dependence among
the k variables. These measures of dependence have gained great importance since quan-
tifying dependence between extreme events occurring at several locations of a random
field is a fundamental issue in applied spatial extreme value analysis.

Cooley et al. [2] showed that the bivariate extremal coefficient can be directly esti-
mated from the madogram (that represents a first order variogram), obtaining in this
way a connection between extreme value theory and the field of geostatistics. An es-
timate of the full pairwise extremal dependence function is given by the λ-madogram
defined in Naveau et al. [10] as

νλ(x1,x2) =
1
2
E
∣∣Fλ(Zx1)− F 1−λ(Zx2)

∣∣ , λ ∈ (0, 1), (1)

where F denotes the marginal distribution of Z.

Although the λ-madogram fully characterizes the pairwise extremal dependence it
does not enable the analysis of dependence between maxima over two disjoint regions
of locations, where by a region of locations of R2 we mean a set of locations of R2. The
importance of characterizing dependence between extremes occurring at two disjoint
regions has been recognized by hydrologists who have grouped data into regions based
on geographical or catchment characteristics. It is clear that, for example, the weather
in mountain regions usually affects the weather in the surrounding regions and therefore
a measure able to capture such regional dependence is essential.

In this paper we propose a measure that enables the analysis of dependence between
maxima over two disjoint regions of locations x = {x1, . . . ,xk} and y = {y1, . . . ,ys} and
therefore generalizes the λ-madogram. This measure, here called generalized madogram,
is introduced in Section 2 and some of its main properties are presented, namely its
relation with the dependence function of the MEV G. In Section 3 we present estimators
for the generalized madogram and derive the respective properties of strong consistency
and asymptotic normality. The performance of the proposed estimators is analyzed in
Section 4 with a max-stable M4 random field. Finally, Section 5 illustrates our approach
through an application to precipitation data from Portugal. Section 6 is devoted to
conclusions. Proofs are sketched in the Appendix.
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2. GENERALIZED MADOGRAM AND DEPENDENCE OF SPATIAL EXTREME
EVENTS

In modeling spatial extremes, both the madogram and the pairwise extremal coefficient
approach rely on pairs of locations. A natural improvement is considering a measure
which moves beyond pairs and considers disjoint sets of locations.

Next, we introduce the generalized madogram which is an extension of Naveau et
al.’s [10]. We also consider a max-stable random field Z = {Zx}x∈R2 with unit Fréchet
margins, but instead of building the pairwise bivariate distribution of this process as
provided by the λ-madogram, we consider two regions of locations x = {x1, . . . ,xk} and
y = {y1, . . . ,ys} and we model the dependence of the maxima over x and y as follows.

Definition 2.1. Let Z = {Zx}x∈IR2 be a max-stable random field with unit Fréchet
margins and x = {x1, . . . ,xk} and y = {y1, . . . ,ys} two disjoint regions of IR2. The
generalized madogram is defined as

να,β(x,y) =
1
2
E
∣∣Fα(M(x))− F β(M(y))

∣∣ , α > 0, β > 0, (2)

where M(x) =
∨k

i=1 Zxi and M(y) =
∨s

j=1 Zyj
.

Remark 2.2. When we take β = 1−α, α ∈ (0, 1), and k = s = 1 in (2), we obtain (1).

Remark 2.3. Since F is a continuous distribution function, the following equalities
hold for the generalized madogram

να,β(x,y) =
1
2
E

∣∣∣∣∣∣
k∨

i=1

Fα(Zxi)−
s∨

j=1

F β(Zyj
)

∣∣∣∣∣∣ (3)

=
1
2
E

∣∣∣∣∣∣
k∨

i=1

F

(
Zxi

α

)
−

s∨
j=1

F

(
Zyj

β

)∣∣∣∣∣∣ .

This representation of the generalized madogram, να,β(x,y), naturally gives rise to the
estimators for this coefficient, defined in Section 3.

Remark 2.4. From (3) it is clear that similarly to the λ-madogram the constants α
and β are the weights of the locations and a practical choice can be α + β = 1. A
wise choice when there are no privileging locations in each region x = {x1, . . . ,xk} and
y = {y1, . . . ,ys} and that generalizes the bivariate approach, is to consider α = λ

k and
β = 1−λ

s , λ ∈ (0, 1).
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The following proposition states that να,β(x,y) provides dependence information
between the regions x and y through the dependence function of the MEV distribution
G. This result generalizes Proposition 1. in Naveau et al. [10].

Proposition 2.5. For any max-stable random field with unit Fréchet margins and for
each pair of disjoint regions of locations x = {x1, . . . ,xk} and y = {y1, . . . ,ys} in IR2,
we have

να,β(x,y) =
Vx,y(α, . . . , α, β, . . . , β)

1 + Vx,y(α, . . . , α, β, . . . , β)
− c(α, β)

with

c(α, β) =
1
2

(
Vx(1, . . . , 1)

α + Vx(1, . . . , 1)
+

Vy(1, . . . , 1)
β + Vy(1, . . . , 1)

)
,

where

Vx,y(z1, . . . , zk, zk+1, . . . , zk+s) = − lnGx,y(z1, . . . , zk, zk+1, . . . , zk+s)

and

Gx,y(z1, . . . , zk+s) = P

({
k⋂

i=1

{Zxi ≤ zi}

}⋂{
s⋂

i=1

{
Zyi

≤ zk+i

}})
, zi ∈ IR+.

Remark 2.6. For each α, β > 0 the coefficient c(α, β) considers the dependence intra
each of the regions x and y through the extremal coefficients of vectors with margins
Zx1 , . . . , Zxk

and Zy1
, . . . , Zys

. Therefore να,β(x,y) considers not only dependence inter
regions but also intra regions. When we consider c(α, β) constant, the dependence
between x and y is stronger for lower values of να,β(x,y), corresponding to lower values
of Vx,y(α, . . . , α, β, . . . , β).

In the following proposition we establish some properties of the generalized mado-
gram.

Proposition 2.7. Let x = {x1, . . . ,xk} and y = {y1, . . . ,ys} be disjoint regions of IR2.
We have, for each α, β ∈ IR+,

1. 0 ≤ να,β(x,y) ≤ 1
2 ;

2. να,α(x,y) = εx∪y

α+εx∪y
− 1

2

(
εx

α+εx
+ εy

α+εy

)
, where εx∪y = Vx,y(1, . . . , 1).

Remark 2.8. The function να,α(x,y) can also be related with the dependence
coefficients considered in Ferreira [7] as follows:

να,α(x,y) =
εyε1(x,y)

α + εyε1(x,y)
− c(α, α) =

(εy + εx)ε2(x,y)
α + (εy + εx)ε2(x,y)

− c(α, α), α > 0,

where ε1(x,y) =
εx∪y

εy
and ε2(x,y) =

εx∪y

εx + εy
. These coefficients evaluate the strength

of dependence between the events {M(x) ≤ u} and {M(y) ≤ u} .
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Remark 2.9. If the variables M(x) and M(y) are independent then

να,α(x,y) =
εx + εy

α + εx + εy
− 1

2

(
εx

α + εx
+

εy
α + εy

)
,

whereas if they are totally dependent

να,α(x,y) =
εx ∨ εy

α + εx ∨ εy
− 1

2

(
εx

α + εx
+

εy
α + εy

)
.

3. ESTIMATING THE GENERALIZED MADOGRAM

Proposition 2.1 relates the generalized madogram with well known dependence measures.
Immediate estimators for the generalized madogram can then be obtained through the
estimators of those measures, which have already been studied in the literature. For a
survey we refer to Krajina [9], Beirlant et al. [1] and Schlather and Tawn [15].

In this section we present a natural non-parametric estimator for the generalized
madogram based on sample means.

Let (Z(t)
x1 , . . . , Z

(t)
xk ) and (Z(t)

y1
, . . . , Z

(t)
ys

), t = 1, . . . , T, be independent replications
of (Zx1 , . . . , Zxk

) and (Zy1
, . . . , Zys

), respectively. Hence {Mt(x) =
∨k

i=1 Z
(t)
xi , t =

1, . . . , T} and {Mt(y) =
∨s

i=1 Z
(t)
yi

, t = 1, . . . , T} are random samples of M(x) and
M(y), respectively.

In the case of known marginal distribution Fxi
of Zxi

, which becomes unit Fréchet
by transformation − 1

log Fxi
(Zxi

) for xi ∈ R2, the estimator for the generalized madogram
is given by

ν̂α,β(x,y) =
1

2T

T∑
t=1

|Fα(Mt(x))− F β(Mt(y))|, α > 0, β > 0.

This estimator is unbiased and converges in distribution to a Gaussian distribution,
as stated in the following proposition.

Proposition 3.1. (Asymptotic normality and strong consistency under known marginal
distribution F)

We have √
T (ν̂α,β(x,y)− να,β(x,y))

σ
→ N(0, 1),

where σ2 = 1
2γα,β

F (x,y)−(να,β(x,y))2 and γα,β
F (x,y) = 1

2E
[
(Fα(M(x))− F β(M(y)))2

]
.

Moreover, ν̂α,β(x,y) converges almost surely to να,β(x,y).

When the distribution of each Zxi , Fxi , is unknown we take the empirical Fréchet
normalization of the variables, i. e., Û

(t)
xi = − 1

log( bFxi
(Z

(t)
xi

))
, where F̂xi is the empirical
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distribution function. We then find the following modification of the above estimator

̂̂να,β
(x,y) =

1
2T

T∑
t=1

∣∣∣∣∣∣Fα

(
k∨

i=1

Û (t)
xi

)
− F β

 s∨
j=1

Û (t)
yj

∣∣∣∣∣∣
=

1
2T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

F

(
Û

(t)
xi

α

)
−

s∨
j=1

F

(
Û

(t)
yj

β

)∣∣∣∣∣∣
=

1
2T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

F̂α
xi

(
Z(t)

xi

)
−

s∨
j=1

F̂ β
yj

(
Z(t)

yj

)∣∣∣∣∣∣ , α > 0, β > 0, (4)

where

F̂xi
(u) =

1
T

T∑
t=1

1I{Z(t)
xi
≤u}.

Proposition 3.2. The estimator ̂̂να,β
(x,y), defined in (4), is strongly consistent.

The asymptotic normality of the estimator is obtained by considering

J(x1, . . . , xk+s) =
1
2

∣∣∣∣∣
k∨

i=1

xα
i −

k+s∨
i=k+1

xβ
i

∣∣∣∣∣
in the following theorem stated in Fermanian et al. [6]. Such a function is of bounded
variation, continuous from above and with discontinuities of the first kind (Neuhaus
[11]).

Theorem 3.3. Let (Zx1 , . . . , Zxk
, Zy1

, . . . , Zys
) be a random vector with d.f. H and

continuous marginal d.f.’s Fx1 , . . . , Fxk
, Fy1

, . . . , Fys
and let the copula associated to H,

CH , have continuous partial derivatives. Assume that J : [0, 1]k+s → R is of bounded
variation, continuous from above and with discontinuities of the first kind. Then, as
T →∞,

1√
T

T∑
i=1

{
J(F̂x1(Z

(i)
x1

), . . . , F̂xk
(Z(i)

xk
), F̂y1

(Z(i)
y1

), . . . , F̂ys
(Z(i)

ys
))

− E(J(Fx1(Z
(i)
x1

), . . . , Fxk
(Z(i)

xk
), Fy1

(Z(i)
y1

), . . . , Fys
(Z(i)

ys
)))
}

→
∫

[0,1]k+s

G(u1, . . . , uk+s) dJ(u1, . . . , uk+s),

in distribution in l∞
(
[0, 1]k+s

)
where the limiting process and G are centered Gaussian.

In the following section we will conduct a simulation study of an M4 random field to

assess the performance of the estimator ̂̂να,β

x,y .
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4. AN M4 RANDOM FIELD

It is well known that the class of max-stable processes called multivariate maxima of
moving maxima processes or simply M4 processes, introduced by Smith and Weissman
[17], is particularly well adapted to modeling the extreme behaviour of several time series
(Zhang and Smith [20, 21]).

To illustrate the computation of the generalized madogram given in (4) we will now
define an M4 random field.

Let us consider that the distribution of (Zx1 , . . . , Zxp) is characterized by the copula

C(ux1 , . . . , uxp) =
+∞∏
l=1

+∞∏
m=−∞

∧
x∈{x1,...,xp}

ualmx
x , uxi ∈ [0, 1], i = 1, . . . , p, (5)

where, for each x ∈ Z2, {almx}l≥1,m∈Z are non-negative constants such that∑+∞
l=1

∑+∞
m=−∞ almx = 1. This random field Z is max-stable, since, for each t > 0, the

copula (5) satisfies
Ct(ux1 , . . . , uxp

) = C(ut
x1

, . . . , ut
xp

),

for any locations x1, . . . ,xp.

As the M4 process considered in Smith and Weissman [17], we can consider that for
each location x, Zx is a moving maxima of variables Xl,n, i. e.,

Zx = max
l≥1

max
−∞<m<+∞

almxXl,1−m, x ∈ Z2, (6)

where {Xl,n}l≥1,n∈Z is a family of independent unit Fréchet random variables. The
dependence structure of (Zx1 , . . . , Zxp) is regulated by the signatures patterns almx and
is given by (5).

For each pair of regions x = {x1, . . . ,xk} and y = {yk+1, . . . ,yk+s} we have

Vx,y(z1, . . . , zk, zk+1, . . . , zk+s)

= − lnC(e−z−1
1 , . . . , e−z−1

k+s)

=
+∞∑
l=1

+∞∑
m=−∞

k∨
i=1

z−1
i almxi ∨

s∨
i=k+1

z−1
i almyi

, zi ∈ IR, i = 1, . . . , k + s,

and consequently, for α > 0 and β > 0 we obtain

Vx,y(α, . . . , α, β, . . . , β) =
+∞∑
l=1

+∞∑
m=−∞

(
k∨

i=1

α−1almxi ∨
k+s∨

i=k+1

β−1almyi

)
.

To illustrate the computation of the generalized madogram we shall consider, in what
follows, examples with a finite number of signature patterns (1 ≤ l ≤ L) and a finite
range of sequential dependencies (M1 ≤ m ≤ M2).
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Example 4.1. Let us consider that for each location x ∈ Z2 with even coordinates
we have a11x = a12x = 1

2 and otherwise a11x = 1
4 = 1 − a12x (Figure 1). The values

of (a11x, a12x) determine the moving pattern or signature pattern of the random field,
which in this case corresponds to one pattern (L = 1).

For the disjoint regions of locations x = {(2, 1), (2, 2)} and y = {(2, 3), (3, 3)} we
have

Vx,y(α, α, β, β) =
1
4
(2α−1 ∨ β−1) +

3
4
(α−1 ∨ β−1)

and therefore, the generalized madogram in this pair of locations is given by

να,β(x,y) =
1
4 (2α−1 ∨ β−1) + 3

4 (α−1 ∨ β−1)
1 + 1

4 (2α−1 ∨ β−1) + 3
4 (α−1 ∨ β−1)

−1
2

( 5
4

α + 5
4

+
1

β + 1

)
, α > 0, β > 0.

0
5

10
15

20

0
5

10
15

20
0

100

200

ij

Z
(i,

j)

2 4 6 8 10 12 14 16 18 20

5

10

15

20

j

i

Fig. 1. Simulation of the M4 as defined in Example 4.1 (left) and the

contour at z(i,j) = 21.1507, the 95% quantile, (right).

Example 4.2. As stated in Zhang and Smith [20], in a real data generating process it
is unrealistic to assume that a single signature pattern would be sufficient to describe
the shape of the process every time it exceeds some high threshold. Hence, we shall now
consider one example with two signature patterns (L = 2).

Let us assume that for each location x = (i, j) we have a11x = a12x = a13x = 1
12 ,

a21x = a22x = a23x = 1
4 if both coordinates are odd and a11x = 1

18 , a12x = 1
9 , a13x = 1

6 ,
a21x = a22x = a23x = 2

9 otherwise. Now the values of (a11x, a12x, a13x) and (a21x, a22x, a23x)
define the two signature patterns of the random field (Figure 2).

For the two disjoint regions previously considered x = {(2, 1), (2, 2)} and y = {(2, 3), (3, 3)}
we now have

Vx,y(α, α, β, β) =
(

α−1 1
18
∨ β−1 1

12

)
+

1
9
(
α−1 ∨ β−1

)
+

1
6
(
α−1 ∨ β−1

)
+
(

α−1 2
3
∨ β−1 3

4

)
and consequently

να,β(x,y) =

(
α−1

18 ∨ β−1

12

)
+ (α−1∨β−1)

9 + (α−1∨β−1)
6 +

(
2α−1

3 ∨ 3β−1

4

)
1 +

(
α−1

18 ∨ β−1

12

)
+ (α−1∨β−1)

9 + (α−1∨β−1)
6 +

(
2α−1

3 ∨ 3β−1

4

)
−1

2

(
1

α + 1
+

10
9

β + 10
9

)
, α > 0, β > 0.
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0
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15

20

Fig. 2. Simulation of the M4 random field as defined in Example 4.2

(left) and the contour at z(i,j) = 26.5302, the 95% quantile, (right).

These examples will be used in the following simulation studies to assess the per-
formance of the estimator given in (4). Figures 3 and 5 show the simulation results
obtained by generating 50 replications of 100 independently and identically distributed
max-stable M4 random fields in the two situations previously presented, with α and β
taking values in {0.2, 0.4, 0.6, 0.8, 1, 2, 3, . . . , 20}. To better illustrate the performance of
our estimator we present in Figures 4 and 6 the true and mean estimated values of the
generalized madogram for some α, β > 0.

As we can see from the values of the mean square error (Figures 3 and 5) the estimates

obtained from our estimator ̂̂να,β
(x,y) are quite close to the true values of the generalized

madogram. Figures 4 and 6 highlight the good performance of our estimator. For an
M4 random field with one signature pattern values of α = β seem to lead to the worst
estimates of the generalized madogram, whereas for two signature patterns the worst
estimates are obtained when β > 10 and α < β.

bbνα,β(x, y) MSE

alpha

5
10

15
20

beta
5

10
15

20

0.1

0.2

0.3

0.4

alpha

10

20

beta
10

20

0e+00

5e−05

1e−04

Fig. 3. The mean estimated values of the generalized madogram

(bbνα,β
(x,y)) and the estimated mean squared error (MSE) for

Example 4.1 with α, β ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, . . . , 20}.
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0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

β

α = 0.2
α = 0.8
α = 1
α = 10
α = 20

Fig. 4. The solid line represents true values of generalized madogram

(να,β(x,y)) and points represent the mean estimated values

(bbνα,β
(x,y)) for Example 4.1, with α ∈ {0.2, 0.8, 1, 10, 20} and

β ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8}.
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Fig. 5. The mean estimated values of the generalized madogram

(bbνα,β
(x,y)) and the estimated mean squared error (MSE) for

Example 4.2 with α, β ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, . . . , 20}.

5. APPLICATION TO PRECIPITATION DATA

We now consider an application of the proposed estimator of the generalized mado-
gram to annual maxima values of daily maxima rainfall in different topographic regions
of Portugal.
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Fig. 6. The solid line represents true values of generalized madogram
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(x,y)) for Example 4.2, with α ∈ {0.2, 0.8, 1, 10, 20} and

β ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8}.

In Portugal there are topographic differences between north and south, whereas in the
north there are several mountains, in the south there are mainly plateaus and plains. The
Central Cordillera, formed by the mountains of Sintra, Montejunto and Estrela, divides
south and north and influences climate in Portugal, namely precipitation. The majority
of the precipitation in Portugal comes from North-West and it is more abundant in the
north than in the south due to the Central Cordillera that creates a physical barrier for
precipitation.

To study the dependence between extreme precipitation occurring in this mountain
area and in surrounding areas, we considered precipitation data that consist of an-
nual maxima of daily maxima precipitation recorded over 32 years (between 1944 and
1981), in 5 Portuguese stations, obtained from the Portuguese National System of Wa-
ter Resources (http://snirh.pt). In Figure 7 we can view the location of the 5 stations
considered. We remark that the stations “Lagoa Comprida” and “Fajão” are located
in North-West part of “Serra da Estrela”, the highest mountain in continental Portugal
and part of the Central Cordillera.

Since the data are maxima over a long period of time, we assumed that they are
independent over the years in each location. We also assumed that the random field is
max-stable with unknown marginal distributions, so data were previously transformed
at each site to become standard Fréchet distribution.

In Figures 8, 9 and 10 we picture the estimated values of the generalized madogram, for
several values of α and β, when considering the mountain region x = {Fajão, L. Comprida}
and different topographic surrounding regions, that are either to north or to the south
of this region.
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Fig. 7. The locations of the stations where precipitation data were

collected, obtained from Portuguese National System of Water

Resources (left) and their representation in Lambert coordinates
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alpha

5
10

15
20

beta

5

10
15

20

E
stim

ates

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

β

α = 0.2
α = 0.8
α = 1
α = 10
α = 20

Fig. 8. Generalized madogram (bbνα,β
(x,y)) estimates obtained for
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(x,y)) estimates obtained for

x = {L. Comprida,Fajão}, y = {C. Felgueira} with

α, β ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, . . . , 20}, on the left, and for

α ∈ {0.2, 0.8, 1, 10, 20} and β ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8}, on

the right.
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Since there is not a reason to take different weights for the considered locations, in the
following we take α = λ/k and β = (1− λ)/s, λ ∈ (0, 1), where k and s are the number
of locations in region x and y, respectively, as stated in Remark 3. The estimated values
for this particular choice of α and β are presented in Figure 11.

bbν λ
2 ,1−λ

(x, y)

0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

0.
20

λ

x={L.Comprida,Fajão} y={C.Felgueira}
x={L.Comprida,Fajão} y={Penamacor}
x={L.Comprida,Fajão} y={B.C.M.}

Fig. 11. Generalized madogram (bbνα,β
(x,y)) estimates obtained for

each pair of disjoint regions when α = λ
2

and β = 1−λ with λ ∈ (0, 1).

Since lower values for να,β(x,y) indicate strong dependence, the results presented in
Figure 11 suggest a stronger dependence between the mountain region
x = {Fajão, L. Comprida} and the north region y = {C. Felgueira}. This is in accor-
dance with the previously stated that the Central Cordillera creates a physical barrier
for precipitation in Portugal.

Considering the estimated values of the λ-madogram for the pairs of locations
(L.Comprida, C. Felgueira) and (Fajão, C. Felgueira) and the estimates of the gener-
alized madogram for regions x = {Fajão, L. Comprida} and y = {C. Felgueira} we
obtained, as expected, different patterns (Figure 12), since the generalized madogram
considers not only the dependence inter regions but also intra regions.

It would be interesting to further investigate this dependence with other regions but
the lack of available data restricts the possible regions to study.

6. CONCLUSION

In this work we presented a new dependence coefficient called generalized madogram
which extends the λ-madogram. The advantage of this measure is that it allows the
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Fig. 12. Generalized madogram (bbνα,β
(x,y)) estimates obtained for

x = {L. Comprida,Fajão}, y = {C. Felgueira} when α = λ
2

and

β = 1− λ with λ ∈ (0, 1) and λ-madogram estimates for the other

regions.

assessment of dependence between maxima over two disjoint regions of locations, in-
corporating dependence inter and intra regions. Besides the theoretical study of this
coefficient, estimators were proposed and a simulation study was carried out to evaluate
its behavior. Applications to real data were also presented. The simulation results show
the good performance of the proposed estimator for the generalized madogram, when
considering an M4 random field. The results obtained in the application to precipitation
data from Portuguese regions are in accordance with the expected dependence in this
case, enhancing the practical utility of the proposed coefficient.

All the simulations presented in this paper were done in R statistical computing
program (http://cran.r-project. org/). We remark that several packages on Extreme
Value analysis have been recently introduced into R, but more recently Ribatet [13]
added to R the package SpatialExtremes that provides functions to analyze and fit max-
stable processes to spatial extremes.
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Appendix

P r o o f of Proposition 2.5

To obtain the result, we start by transforming the definition of να,β(x,y) through
the relation |a− b| = 2(a ∨ b)− (a + b), and then take into account that

E
(
Fα (M(x)) ∨ F β (M(y))

)
= E

(
F

(
M(x)

α
∨ M(y)

β

))
and

P

(
M(x)

α
∨ M(y)

β
≤ u

)
= P (M(x) ≤ αu,M(y) ≤ βu)

= Gx,y(αu, . . . , αu, βu, . . . , βu)

= exp
{
−u−1Vx,y(α, . . . , α, β, . . . , β)

}
, u > 0.

Hence,

E

(
F

(
M(x)

α
∨ M(y)

β

))

=
∫ +∞

0

F (u) exp (−Vx,y(αu, . . . , αu, βu, . . . , βu))

d
du

(−Vx,y(αu, . . . , αu, βu, . . . , βu)) du

=
∫ +∞

0

exp
(
−u−1 − u−1Vx,y(α, . . . , α, β, . . . , β)

)
u−2Vx,y(α, . . . , α, β, . . . , β) du

=
Vx,y(α, . . . , α, β, . . . , β)

1 + Vx,y(α, . . . , α, β, . . . , β)
.

Using similar arguments, we obtain E (Fα(M(x))) = Vx(α,...,α)
1+Vx(α,...,α) = Vx(1,...,1)

α+Vx(1,...,1) and

E
(
F β(M(y))

)
= Vy(β,...,β)

1+Vy(β,...,β) = Vy(1,...,1)
β+Vy(1,...,1) . �

P r o o f of Proposition 2.7

The first statement results from the definition of the generalized madogram and the
second follows from the definition of the extremal coefficient ε. �

P r o o f of Proposition 3.1

Let Y1, . . . , YT be independent copies of Y = 1
2

∣∣Fα(M(x))− F β(M(y))
∣∣. We have

that √
T (Ȳ − µY )

σY
→ N(0, 1),
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where µY = 1
2E
∣∣Fα(M(x))− F β(M(y))

∣∣ = να,β(x,y) and σ2
Y = 1

2γα,β
F (x,y)−(να,β(x,y))2.

The strong consistency of ν̂α,β(x,y) follows since the sample mean converges almost
surely to the mean value. �

P r o o f of Proposition 3.2

The estimator ̂̂να,β
(x,y) is strongly consistent since it holds∣∣∣∣∣∣12 1

T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

F̂α
xi

(
Z(t)

xi

)
−

s∨
j=1

F̂ β
yj

(Z(t)
yj

)

∣∣∣∣∣∣− 1
2
E

∣∣∣∣∣∣
k∨

i=1

Fα(Z(t)
xi

)−
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣12 1
T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

F̂α
xi

(
Z(t)

xi

)
−

s∨
j=1

F̂ β
yj

(Z(t)
yj

)

∣∣∣∣∣∣− 1
2

1
T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

Fα(Z(t)
xi

)−
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣12 1
T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

Fα(Z(t)
xi

)−
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣− 1
2
E

∣∣∣∣∣∣
k∨

i=1

Fα(Z(t)
xi

)−
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣
∣∣∣∣∣∣ .

The second term converges almost surely to zero by the strong Law of Large Numbers.
In what concerns the first term we have∣∣∣∣∣∣12 1

T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

F̂α
xi

(
Z(t)

xi

)
−

s∨
j=1

F̂ β
yj

(Z(t)
yj

)

∣∣∣∣∣∣− 1
2

1
T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

Fα(Z(t)
xi

)−
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 1
2

1
T

T∑
t=1

∣∣∣∣∣∣
∣∣∣∣∣∣

k∨
i=1

F̂α
xi

(
Z(t)

xi

)
−

s∨
j=1

F̂ β
yj

(Z(t)
yj

)

∣∣∣∣∣∣−
∣∣∣∣∣∣

k∨
i=1

Fα(Z(t)
xi

)−
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 1
2

1
T

T∑
t=1

∣∣∣∣∣∣
k∨

i=1

F̂α
xi

(
Z(t)

xi

)
−

s∨
j=1

F̂ β
yj

(Z(t)
yj

)−
k∨

i=1

Fα(Z(t)
xi

) +
s∨

j=1

F β(Z(t)
yj

)

∣∣∣∣∣∣
≤ 1

2
1
T

T∑
t=1

 k∨
i=1

∣∣∣F̂α
xi

(
Z(t)

xi

)
− Fα(Z(t)

xi
)
∣∣∣+ s∨

j=1

∣∣∣F̂ β
yj

(Z(t)
yj

)− F β(Z(t)
yj

)
∣∣∣


≤ 1
2

1
T

T∑
t=1

 k∑
i=1

∣∣∣F̂α
xi

(
Z(t)

xi

)
− Fα(Z(t)

xi
)
∣∣∣+ s∑

j=1

∣∣∣F̂ β
yj

(Z(t)
yj

)− F β(Z(t)
yj

)
∣∣∣
 ,

which converges almost surely to zero according to Gilat and Hill [8] (proof of Theorem
1.1). �
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