[1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.:
Rings with Generalized Identities. Monographs and Textbooks in Pure and Applied Mathematics 196 Marcel Dekker, New York (1996).
MR 1368853
[6] Filippis, V. De:
Generalized derivations and commutators with nilpotent values on Lie ideals. Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175.
MR 2285443 |
Zbl 1133.16022
[7] Filippis, V. de, Scudo, G., El-Sayiad, M. S. Tammam:
An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czech. Math. J. 62 (2012), 453-468.
DOI 10.1007/s10587-012-0039-0 |
MR 2990186
[11] Jacobson, N.:
Structure of Rings. American Mathematical Society Colloquium Publications 37 American Mathematical Society, Providence (1964).
MR 0222106
[12] Kharchenko, V. K.:
Differential identities of prime rings. Algebra Logic 17 (1979), 155-168 translation from Algebra i Logika Russian 17 (1978), 220-238, 242-243.
MR 0541758
[18] Lee, P. H., Lee, T. K.:
Lie ideals of prime rings with derivations. Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80.
MR 0718903 |
Zbl 0515.16018
[20] Lee, T. K.:
Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38.
MR 1166215 |
Zbl 0769.16017
[28] Thomas, M. P.:
The image of a derivation is contained in the radical. Ann. Math. (2) 128 (1988), 435-460.
MR 0970607 |
Zbl 0681.47016
[30] Yood, B.:
Continuous homomorphisms and derivations on Banach algebras. Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 Contemp. Math. 32 Amer. Math. Soc., Providence (1984), 279-284 F. Greenleaf et al.
MR 0769517 |
Zbl 0569.46025