[2] Aimar, H., Carena, M., Iaffei, B.:
On approximation of maximal operators. Publ. Math. 77 87-99 (2010).
MR 2675736 |
Zbl 1224.42058
[4] Assouad, P.:
Étude d'une dimension métrique liée à la possibilité de plongements dans {${\mathbb R}\sp{n}$}. C. R. Acad. Sci., Paris, Sér. A 288 731-734 (1979), French.
MR 0532401
[5] Coifman, R. R., Guzman, M. de:
Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 25 137-143 (1970).
MR 0320644 |
Zbl 0249.43009
[6] Coifman, R. R., Weiss, G.:
Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals. Lecture Notes in Mathematics 242 Springer, Berlin (1971).
DOI 10.1007/BFb0058946 |
MR 0499948 |
Zbl 0224.43006
[13] Iaffei, B., Nitti, L.: Riesz type potentials in the framework of quasi-metric spaces equipped with upper doubling measures. ArXiv:1309.3755 (2013).
[14] Kigami, J.:
Analysis on Fractals. Cambridge Tracts in Mathematics 143 Cambridge University Press, Cambridge (2001).
MR 1840042 |
Zbl 0998.28004
[17] Mosco, U.:
Variational fractals. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 683-712 (1997).
MR 1655537 |
Zbl 1016.28010
[18] Strichartz, R. S.:
Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006).
MR 2246975 |
Zbl 1190.35001