Previous |  Up |  Next

Article

Keywords:
metric space; doubling measure; Hausdorff-Kantorovich metric; iterated function system
Summary:
The classical self-similar fractals can be obtained as fixed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, both have the doubling property. We prove that the elements of Hutchinson orbits possess the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits.
References:
[1] Aimar, H., Carena, M., Iaffei, B.: Boundedness of the Hardy-Littlewood maximal operator along the orbits of contractive similitudes. J. Geom. Anal. 23 1832-1850 (2013). DOI 10.1007/s12220-012-9309-1 | MR 3107681 | Zbl 1279.28012
[2] Aimar, H., Carena, M., Iaffei, B.: On approximation of maximal operators. Publ. Math. 77 87-99 (2010). MR 2675736 | Zbl 1224.42058
[3] Aimar, H., Carena, M., Iaffei, B.: Discrete approximation of spaces of homogeneous type. J. Geom. Anal. 19 1-18 (2009). DOI 10.1007/s12220-008-9048-5 | MR 2465294 | Zbl 1178.28002
[4] Assouad, P.: Étude d'une dimension métrique liée à la possibilité de plongements dans {${\mathbb R}\sp{n}$}. C. R. Acad. Sci., Paris, Sér. A 288 731-734 (1979), French. MR 0532401
[5] Coifman, R. R., Guzman, M. de: Singular integrals and multipliers on homogeneous spaces. Rev. Un. Mat. Argentina 25 137-143 (1970). MR 0320644 | Zbl 0249.43009
[6] Coifman, R. R., Weiss, G.: Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals. Lecture Notes in Mathematics 242 Springer, Berlin (1971). DOI 10.1007/BFb0058946 | MR 0499948 | Zbl 0224.43006
[7] Falconer, K.: Techniques in Fractal Geometry. John Wiley Chichester (1997). MR 1449135 | Zbl 0869.28003
[8] Hutchinson, J. E.: Fractals and self similarity. Indiana Univ. Math. J. 30 713-747 (1981). DOI 10.1512/iumj.1981.30.30055 | MR 0625600 | Zbl 0598.28011
[9] Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and the {RBMO} space of Tolsa. Publ. Mat., Barc. 54 485-504 (2010). DOI 10.5565/PUBLMAT_54210_10 | MR 2675934 | Zbl 1246.30087
[10] Hytönen, T., Liu, S., Yang, D., Yang, D.: Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Can. J. Math. 64 892-923 (2012). DOI 10.4153/CJM-2011-065-2 | MR 2957235 | Zbl 1250.42044
[11] Hytönen, T., Martikainen, H.: Non-homogeneous $Tb$ theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22 1071-1107 (2012). DOI 10.1007/s12220-011-9230-z | MR 2965363 | Zbl 1261.42017
[12] Hytönen, T., Yang, D., Yang, D.: The Hardy space {$H\sp 1$} on non-homogeneous metric spaces. Math. Proc. Camb. Philos. Soc. 153 9-31 (2012). DOI 10.1017/S0305004111000776 | MR 2943664
[13] Iaffei, B., Nitti, L.: Riesz type potentials in the framework of quasi-metric spaces equipped with upper doubling measures. ArXiv:1309.3755 (2013).
[14] Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics 143 Cambridge University Press, Cambridge (2001). MR 1840042 | Zbl 0998.28004
[15] Kigami, J.: A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math. 6 259-290 (1989). DOI 10.1007/BF03167882 | MR 1001286 | Zbl 0686.31003
[16] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 42 15-23 (1946). DOI 10.1017/S0305004100022684 | MR 0014397 | Zbl 0063.04088
[17] Mosco, U.: Variational fractals. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 683-712 (1997). MR 1655537 | Zbl 1016.28010
[18] Strichartz, R. S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006). MR 2246975 | Zbl 1190.35001
Partner of
EuDML logo