Previous |  Up |  Next

Article

Keywords:
delay system; output feedback stabilization; nonlinear observer; separation principle
Summary:
In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.
References:
[1] Atassi, A. N., Khalil, H. K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1672-1687. DOI 10.1109/9.788534 | MR 1709863 | Zbl 0958.93079
[2] Atassi, A. N., Khalil, H. K.: Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Systems Control Lett. 39 (2000), 183-191. DOI 10.1016/s0167-6911(99)00085-7 | MR 1831258 | Zbl 0948.93007
[3] Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. In: SIAM Stud. Appl. Math. 15 (1994). DOI 10.1137/1.9781611970777 | MR 1284712
[4] Choi, H. L., Lim, J. T.: Global exponential stabilization of a class of nonlinear systems by output feedback. IEEE Trans. Automat. Control 50 (2005), 2, 255-257. DOI 10.1109/tac.2004.841886 | MR 2116434
[5] Germani, A., Manes, C., Pepe, P.: Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika 36 (2000), 31-42. MR 1760886 | Zbl 1249.93146
[6] Germani, A., Manes, C., Pepe, P.: An asymptotic state observer for a class of nonlinear delay systems. Kybernetika 37 (2001), 459-478. MR 1859096 | Zbl 1265.93029
[7] Germani, A., Manes, C., Pepe, P.: Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability. Int. J. Robust Nonlinear Control 13 (2003), 909-937. DOI 10.1002/rnc.853 | MR 1998320 | Zbl 1039.93008
[8] Germani, A., Manes, C., Pepe, P.: Separation theorems for a class of retarded nonlinear systems. In: IFAC-Papers OnLine, Workshop on Time-Delay Systems, Praha 2010. DOI 10.3182/20100607-3-cz-4010.00006
[9] Germani, A., Manes, C., Pepe, P.: Observer-based stabilizing control for a class of nonlinear retarded systems. Lect. Notes Control Inform. Sci. 423 (2012), 331-342. DOI 10.1007/978-3-642-25221-1_25 | MR 3050770 | Zbl 1298.93287
[10] Hale, J. K., Lunel, S. M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences. Springer-Verlag, New York 1991. DOI 10.1007/978-1-4612-4342-7
[11] Ibrir, S.: Observer-based control of a class of time-delay nonlinear systems having triangular structure. Automatica 47 (2011), 388-394. DOI 10.1016/j.automatica.2010.10.052 | MR 2878289 | Zbl 1207.93015
[12] Jankovic, M.: Recursive predictor design for state and output feedback controllers for linear time delay systems. Automatica 46 (2010), 510-517. DOI 10.1016/j.automatica.2010.01.021 | MR 2877101 | Zbl 1194.93077
[13] Khalil, H. K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ 2001. DOI 10.1002/rnc.1054 | Zbl 1194.93083
[14] Kwon, O. M., Park, J. H., Lee, S. M., Won, S. C.: LMI optimization approach to observer-based controller design of uncertain time-delay systems via delayed feedback. J. Optim. Theory Appl. 128 (2006), 103-117. DOI 10.1007/s10957-005-7560-3 | MR 2201891 | Zbl 1121.93025
[15] Li, X., Souza, C. de: Output feedback stabilization of linear time-delay systems. Stability and control of time-delay systems. Lect. Notes Control Inform. Sci. (1998), 241-258. DOI 10.1007/BFb0027489 | MR 1482581
[16] Marquez, L. A., Moog, C., Villa, M. Velasco: Observability and observers for nonlinear systems with time delay. Kybernetika 38 (2002), 445-456. MR 1937139
[17] Pepe, P., Karafyllis, I.: Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form. Int. J. Control 86 (2013), 232-243. DOI 10.1080/00207179.2012.723137 | MR 3017700 | Zbl 1278.93219
[18] Qian, C., W.Lin: Output feedback control of a class of nonlinear systems: A non-separation principle paradigm. IEEE Trans. Automat. Control 47 (2002), 1710-1715. DOI 10.1109/tac.2002.803542 | MR 1929946
[19] Sun, Y. J.: Global stabilization of uncertain systems with time-varying delays via dynamic observer-based output feedback. Linear Algebra Appl. 353 (2002), 91-105. DOI 10.1016/s0024-3795(02)00292-6 | MR 1918750
[20] Thuan, M. V., Phat, V. N., Trinh, H.: Observer-based controller design of time-delay systems with an interval time-varying delay. Int. J. Appl. Math. Comput. Sci. 22 (2012), 4, 921-927. DOI 10.2478/v10006-012-0068-8 | MR 3059771 | Zbl 1283.93057
[21] Tsinias, J.: A theorem on global stabilization of nonlinear systems by linear feedback. Systems Control Lett. 17 (1991), 357-362. DOI 10.1016/0167-6911(91)90135-2 | MR 1136537 | Zbl 0749.93071
[22] Wang, Z., Goodall, D. P., Burnham, K. J.: On designing observers for time delay systems with nonlinear disturbances. Int. J. Control 75 (2002), 803-811. DOI 10.1080/00207170210126245 | MR 1924004 | Zbl 1027.93007
[23] Zhang, X., and, Z. Cheng, Wang, X. P.: Output feedback stabilization of nonlinear systems with delayed output. In: Proc. American Control Conference, Portland 2005, pp. 4486-4490. DOI 10.1109/acc.2005.1470769
[24] Zhou, L., Xiao, X., Lu, G.: Observers for a class of nonlinear systems with time delay. Asian J. Control 11 (2009), 6, 688-693. DOI 10.1002/asjc.150 | MR 2791315
Partner of
EuDML logo