[1] Betts, J.:
Issues in the direct transcription of optimal control problem to sparse nonlinear programs. In: Computational Optimal Control (R. Bulirsch and D. Kraft, eds.), Birkhauser, 1994, pp. 3-17.
DOI 10.1007/978-3-0348-8497-6_1 |
MR 1287613
[2] Betts, J.:
Survey of numerical methods for trajectory optimization. J. Guidance, Control, and Dynamics 21 (1998), 193-207.
DOI 10.2514/2.4231 |
Zbl 1158.49303
[3] Boor, C. De.:
A Practical Guide to Spline. Springer-Verlag, New York 1978.
MR 0507062
[4] Elnegar, G. N., Kazemi, M. A.:
Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11 (1998), 195-217.
DOI 10.1023/A:1018694111831 |
MR 1652069
[5] Foroozandeh, Z., Shamsi, M.:
Solution of nonlinear optimal control problems by the interpolating scaling functions. Acta Astronautica 72 (2012), 21-26.
DOI 10.1016/j.actaastro.2011.10.004
[6] Gong, Q., Kang, W., Ross, I. M.:
A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Automat. Control 51 (2006), 1115-1129.
DOI 10.1109/tac.2006.878570 |
MR 2238794
[12] Lakestani, M., Razzaghi, M., Dehghan, M.:
Solution of nonlinear fredholm-hammerstein integral equations by using semiorthogonal spline wavelets. Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2005), 113-121.
DOI 10.1155/mpe.2005.113 |
MR 2144111 |
Zbl 1073.65568
[13] Lakestani, M., Razzaghi, M., Dehghan, M.:
Semiorthogonal spline wavelets approximation for fredholm integro-differential equations. Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2006), 1-12.
DOI 10.1155/mpe/2006/96184 |
Zbl 1200.65112
[15] Marzban, H. R., Razzaghi, M.:
Rationalized Haar approach for nonlinear constrined optimal control problems. Appl. Math. Modell. 34 (2010), 174-183.
DOI 10.1016/j.apm.2009.03.036 |
MR 2566686
[18] Mehra, R. K., Davis, R. E.:
A generalized gradient method for optimal control problems with inequality constraints and singular arcs. IEEE Trans. Automat. Control 17 (1972), 69-72.
DOI 10.1109/tac.1972.1099881 |
Zbl 0268.49038
[19] Ordokhani, Y., Razzaghi, M.:
Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions. Dynam. Contin. Discrete Impuls. Syst. Ser. B 12 (2005), 761-773.
MR 2179602 |
Zbl 1081.49026
[20] Powell, M. J. D.:
An efficient method for finding the minimum of a function of several variables without calculating the derivatives. Comput. J. 7 (1964), 155-162.
DOI 10.1093/comjnl/7.2.155 |
MR 0187376
[21] Razzaghi, M., Elnagar, G.:
Linear quadratic optimal control problems via shifted Legendre state parameterization. Int. J. Systems Sci. 25 (1994), 393-399.
DOI 10.1080/00207729408928967 |
MR 1262503
[22] Schittkowskki, K.:
NLPQL: A fortran subroutine for solving constrained nonlinear programming problems. Ann. Oper. Res. 5 (1986), 2, 485-500.
DOI 10.1007/bf02022087 |
MR 0948031
[26] Yen, V., Nagurka, M.:
Linear quadratic optimal control via Fourier-based state parameterization. J. Dynam. Syst. Measure Control 11 (1991), 206-215.
DOI 10.1115/1.2896367
[27] Yen, V., Nagurka, M.:
Optimal control of linearly constrained linear systems via state parameterization. Optimal Control Appl. Methods 13 (1992), 155-167.
DOI 10.1002/oca.4660130206 |
MR 1197736