Previous |  Up |  Next

Article

Keywords:
Krasnoselskii's fixed points; periodic solution; large contraction
Summary:
The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay \begin{equation*} x'(t)= -\int_{t-\tau (t)}^{t}a(t,s) g(x(s))\,ds + \frac{d}{dt}Q (t,x(t-\tau (t)))+ G(t,x(t),x(t-\tau (t))). \end{equation*} We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for $\tau $, $g$, $a$, $Q$ and $G$ to show that this sum of mappings fits into the framework of a modification of Krasnoselskii's theorem so that existence of nonnegative T-periodic solutions is concluded.
References:
[1] Adivar M., Islam M.N., Raffoul Y.N.: Separate contraction and existence of periodic solution in totally nonlinear delay differential equations. Hacet. J. Math. Stat. 41 (2012) no. 1, 1–13. MR 2976906
[2] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for two types of second-order nonlinear neutral differential equations with variable delay. Proyecciones 32 (2013), no. 4, 377–391. DOI 10.4067/S0716-09172013000400006 | MR 3145042 | Zbl 1293.34085
[3] Ardjouni A., Djoudi A.: Existence of periodic solutions in totally nonlinear neutral dynamic equations with variable delay on a time scale. Mathematics in engineering, science and aerospace MESA, Vol. 4, No. 3, pp. 305–318, 2013. CSP - Cambridge, UK; I&S - Florida, USA, 2013. Zbl 1297.34080
[4] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for two kinds of nonlinear neutral differential equations with variable delay. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), 357–366. MR 3098458 | Zbl 1268.34127
[5] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale. Malaya J. Matematik 1 (2013), no. 2, 60–67.
[6] Ardjouni A., Djoudi A.: Existence and positivity of solutions for a totally nonlinear neutral periodic differential equation. Miskolc Math. Notes 14 (2013), no. 3, 757–768. MR 3153963 | Zbl 1299.34230
[7] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for a second-order nonlinear neutral differential equation with variable delay. Adv. Nonlinear Anal. 2 (2013), no. 2, 151–161, DOI 10.1515/anona-2012-0024. DOI 10.1515/anona-2012-0024 | MR 3055532 | Zbl 1278.34077
[8] Ardjouni A., Djoudi A.: Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay. Electronic J. Qual. Theory Differ. Equ. 2012, no. 31, 1–9. MR 2904111
[9] Ardjouni A., Djoudi A.: Existence of periodic solutions for totally nonlinear neutral differential equations with variable delay. Sarajevo J. Math. 8 (2012), no. 1, 107–117. MR 2977530 | Zbl 1260.34134
[10] Ardjouni A., Djoudi A.: Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay. Appl. Math. E-Notes 12 (2012), 94–101. MR 2988223 | Zbl 1254.34098
[11] Ardjouni A., Djoudi A.: Periodic solution in totally nonlinear dynamic equations with functional delay on a time scale. Rend. Semin. Mat. Univ. Politec. Torino 68 (2010), no. 4, 349–359. MR 2815207
[12] Becker L.C., Burton T.A.: Stability, fixed points and inverse of delays. Proc. Roy. Soc. Edinburgh Set. A 136 (2006), 245–275. MR 2218152
[13] Burton T.A.: Liapunov functionals, fixed points and stability by Krasnoselskii's theorem. Nonlinear Stud. 9 (2002), no. 2, 181–190. MR 1898587 | Zbl 1084.47522
[14] Burton T.A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, New York, 2006. MR 2281958 | Zbl 1160.34001
[15] Burton T.A.: A fixed point theorem of Krasnoselskii. Appl. Math. Lett. 11 (1998), 85–88. DOI 10.1016/S0893-9659(97)00138-9 | MR 1490385 | Zbl 1127.47318
[16] Burton T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, NY, 1985. MR 0837654 | Zbl 1209.34001
[17] Chen F.: Positive periodic solutions of neutral Lotka-Volterra system with feedback control. Appl. Math. Comput. 162 (2005), no. 3, 1279–1302. DOI 10.1016/j.amc.2004.03.009 | MR 2113969 | Zbl 1125.93031
[18] Deham H., Djoudi A.: Periodic solutions for nonlinear differential equation with functional delay. Georgian Math. J. 15 (2008), no. 4, 635–642. MR 2494962 | Zbl 1171.47061
[19] Deham H., Djoudi A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electron. J. Differential Equations 2010, no. 127, 1–8. MR 2685037 | Zbl 1203.34110
[20] Hale J.: Theory of Functional Differential Equations. second edition, Applied Mathematical Sciences, 3, Springer, New York-Heidelberg, 1977. DOI 10.1007/978-1-4612-9892-2_3 | MR 0508721 | Zbl 1092.34500
[21] Hale J.K., Verduyn Lunel S.M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, 99, Springer, New York, 1993. DOI 10.1007/978-1-4612-4342-7_3 | MR 1243878 | Zbl 0787.34002
[22] Fan M., Wang K., Wong P.J.Y., Agarwal R.P.: Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments. Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 4, 801–822. DOI 10.1007/s10114-003-0311-1 | MR 2023372 | Zbl 1047.34080
[23] Smart D.R.: Fixed Point Theorems. Cambridge Tracts in Mathematics, 66, Cambridge University Press, London-New York, 1974. MR 0467717 | Zbl 0427.47036
[24] Wang Y., Lian H., Ge W.: Periodic solutions for a second order nonlinear functional differential equation. Appl. Math. Lett. 20 (2007), 110–115. DOI 10.1016/j.aml.2006.02.028 | MR 2273618
[25] Yankson E.: Existence and positivity of solutions for a nonlinear periodic differential equation. Arch. Math. (Brno) 48 (2012), no. 4, 261–270. DOI 10.5817/AM2012-4-261 | MR 3007609 | Zbl 1274.34230
Partner of
EuDML logo