Previous |  Up |  Next

Article

Keywords:
Polish group; $\sigma $-ideal; meager sets
Summary:
We give a classical proof of the theorem stating that the $\sigma $-ideal of meager sets is the unique $\sigma $-ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.
References:
[1] Balcerzak M., Rogowska D.: Making some ideals meager on sets of size of the continuum. Topology Proc. 21 (1996), 1–13. MR 1489187 | Zbl 0888.54028
[2] Kechris A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156, Springer, New York, 1995. MR 1321597 | Zbl 0819.04002
[3] Kechris A.S., Solecki S.: Approximation of analytic by Borel sets and definable countable chain conditions. Israel J. Math. 89 (1995), 343–356. DOI 10.1007/BF02808208 | MR 1324469 | Zbl 0827.54023
[4] Recław I., Zakrzewski P.: Fubini properties of ideals. Real Anal. Exchange 25 (1999/00), no. 2, 565–578. MR 1778511 | Zbl 1016.03050
[5] Zapletal J.: Forcing with ideals generated by closed sets. Comment. Math. Univ. Carolin. 43 (2002), no. 1, 181–188. MR 1903318 | Zbl 1069.03037
[6] Zapletal J.: Descriptive Set Theory and Definable Forcing. Mem. Amer. Math. Soc. 167 (2004), no. 793. MR 2023448 | Zbl 1037.03042
[7] Zapletal J.: Forcing Idealized. Cambridge Tracts in Mathematics, 174, Cambridge University Press, Cambridge, 2008. MR 2391923 | Zbl 1140.03030
Partner of
EuDML logo