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Existence of nonnegative periodic solutions in neutral

integro-differential equations with functional delay

Imene Soulahia, Abdelouaheb Ardjouni, Ahcene Djoudi

Abstract. The fixed point theorem of Krasnoselskii and the concept of large con-
tractions are employed to show the existence of a periodic solution of a nonlinear
integro-differential equation with variable delay

x′(t) = −

∫

t

t−τ(t)
a(t, s)g(x(s)) ds +

d

dt
Q(t, x(t− τ(t))) + G(t, x(t), x(t− τ(t))).

We transform this equation and then invert it to obtain a sum of two mappings
one of which is completely continuous and the other is a large contraction. We
choose suitable conditions for τ , g, a, Q and G to show that this sum of map-
pings fits into the framework of a modification of Krasnoselskii’s theorem so that
existence of nonnegative T-periodic solutions is concluded.

Keywords: Krasnoselskii’s fixed points; periodic solution; large contraction

Classification: 34K20, 34K30, 34K40

1. Introduction

The use of ordinary and partial differential equations to model physical or
biological systems and processes has a long history, dating to Lotka and Volterra.
But all processes take time delays to complete. The delays can represent gestation
times, incubation periods, or transport delays. In many cases, time delays can be
substantial such as gestation and maturation or can represent little lags such as
acceleration and deceleration in physical processes. Therefore, it becomes natural
to include time delay terms into the differential equations that model population
dynamics. The models that incorporate such delay times are referred to as delay
differential equation models.

In the last fifty years, delay models are becoming more common, appearing in
many branches of biological, economical and physical modelling (see [1]–[22], [24],
[25]). This is due to their advantage of combining a simple, intuitive derivation
with a wide variety of possible behavior regimes and to the fact that such models
operate on an infinite dimensional space consisting of continuous functions that
accommodate high dimensional dynamics (see [14], [20]–[21]).
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More recently investigators have given special attentions to the study of equa-
tions in which the delay occurs in the derivative of the state variable as well as
in the independent variable, so called neutral differential equations. As known in
Hale [20], Hale and Lunel [21] neutral delay differential equations appear as mod-
els of electrical networks which contain lossless transmission lines. Such networks
arise, for example, in high speed computers where lossless transmission lines are
used to interconnect switching circuits.

Existence, uniqueness, stability and positivity of solutions of functional dif-
ferential equations are of great interest in mathematics and its applications to
the modeling of various practical problems (see [1]–[14], [17]–[22], [24]–[25] and
references therein). Positivity is one of the most common and most important
characteristics of mathematical models. In the problem of economics, the positiv-
ity is quite important for processes that model interest rate dynamics on financial
markets, because the interest must be positive. Also, in fluid flow problems,
densities, pressures, and concentrations are always positive.

In the current paper we study the existence of periodic solutions for the non-
linear neutral integro-differential equation with variable delay

(1.1)

x′(t) = −

∫ t

t−τ(t)

a(t, s)g(x(s)) ds

+
d

dt
Q(t, x(t− τ(t))) +G(t, x(t), x(t − τ(t))),

x(t+ T ) = x(t),

where T > 0 be fixed, the nonlinear terms Q and G are an L1−Carathéodory
functions and the function a ∈ L1[0, T ] is bounded. Equation (1.1) has a long
history and the simpler form of it was considered in 1928 by Volterra with a
biological application in mind (see [12]). Obviously, the present problem is totally
nonlinear with no nontrivial ode linear term and so the variation of parameters
cannot be applied directly. Then, we have to transform this equation into a
more tractable one suitable for the inversion. After the integration process we
derive a fixed point mapping which we express as a sum of two mappings one is
a completely continuous function and the other is a kind of contractive function
called large contraction. We, prudently, choose hypotheses for the functions τ , g,
a, Q and G to show that this sum of mappings fits very nicely into the framework
of a modification of Krasnoselskii’s theorem so that a theorem of existence of
nonnegative T-periodic solutions for (1.1) is proved. For details on Krasnoselskii’s
theorem we refer the reader to [14] and [23]. In Section 2, we present the inversion
of equation (1.1) and the modification of Krasnoselskii’s fixed point theorem. We
present our main results on existence of periodic solutions in Section 3 and we
provide hypotheses for such solutions to be nonnegative in Section 4.

2. Preliminaries

The following definition is essential in our analysis.
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Definition 1. A function F : [0, T ]×R
n → R is an L1-Carathéodory function if

it satisfies the following conditions.

(c1) For each z ∈ R
n, the mapping t→ F (t, z) is Lebesgue measurable.

(c2) For almost all t ∈ [0, T ], the mapping z → F (t, z) is continuous on R
n.

(c3) For each r > 0, there exists fr ∈ L1([0, T ],R) such that, for almost all
t ∈ [0, T ] and for all z with |z| < r, we have |F (t, z)| ≤ fr(t).

For T > 0 we let PT to be the space of continuous functions x that are periodic
in t, with period T . Then, (PT , ‖ · ‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈[0,T ]

|x(t)| .

We will assume that the following conditions hold.

(k1) a ∈ L1
Loc(R,R) is positive and bounded, satisfies a(t+ T ) = a(t) for all t

and

1 − e−
∫

t

t−T
a(u,u) du ≡

1

η
6= 0.

(k2) τ twice continuously differentiable and τ(t) ≥ τ∗ > 0 and τ(t+T ) = τ(t).
(k3) Q and G are an L1-Carathéodory functions, and for all t

Q(t+ T ) = Q(t), G(t+ T, x, y) = G (t, x, y) .

(k4) Function g(x) is locally Lipschitz continuous in x. That is, there exists a
positive constant K1 so that if |x| ≤ L, then

(2.1) |g(x) − g(y)| ≤ K1‖x− y‖.

Let the mapping F be defined by

(2.2) F (x) = x− g(x),

where g is the function given in equation (1.1).

Now we are ready to transform equation (1.1) to a more tractable, but equiva-
lent, one having the same properties which we then invert to define a fixed point
mapping.

Lemma 1. Equation (1.1) is equivalent to

(2.3)

d

dt
{x(t) −Q(t, x(t− τ(t)))} = B(t, t− τ(t))(1 − τ ′(t))g(x(t − τ(t)))

+
d

dt

∫ t

t−τ(t)

B(t, s)g(x(s)) ds

+G(t, x(t), x(t − τ(t))),
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where

(2.4) B(t, s) :=

∫ s

t

a(u, s) du, with B(t, t− τ(t)) =

∫ t−τ(t)

t

a(u, t− τ(t)) du.

Furthermore,

(2.5) B(t+ T, s+ T ) = B(t, s) and B(t+ T, t+ T − τ(t+ T )) = B(t, t− τ(t)).

Proof: Differentiating the integral term in (2.3), we obtain

d

dt

∫ t

t−τ(t)

B(t, s)g(x(s)) ds

= B(t, t)g (x (t)) −B(t, t− τ(t))(1 − τ ′(t))g(x(t − τ(t)))

+

∫ t

t−τ(t)

∂

∂t
B(t, s)g(x(s)) ds.

Substituting this into (2.4), it follows that (2.4) is equivalent to (1.1) provided B
satisfies the following conditions

(2.6) B(t, t) = 0 and
∂

∂t
B(t, s) = −a(t, s).

Now (2.6) implies

(2.7) B(t, s) = −

∫ t

0

a(u, s) du+ φ(s),

for some function φ, and B(t, s) must satisfy

B(t, s) = −

∫ t

0

a(u, t) du+ φ(t) = 0.

Consequently,

φ(t) =

∫ t

0

a(u, t) du.

Substituting this into (2.7), we obtain

B(t, s) = −

∫ t

0

a(u, s) du+

∫ s

0

a(u, s) du

=

∫ s

t

a(u, s) du.

This definition of B satisfies (2.6). Consequently, (1.1) is, indeed, equivalent
to (2.4).
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Now, we must show that

B(t+ T, s+ T ) = B(t, s) and B(t+ T, t+ T − τ(t + T )) = B(t, t− τ(t)).

We have

B(t+ T, s+ T ) =

∫ s+T

t+T

a(u, s+ T ) du.

By letting u = y + T , we see that

B(t+ T, s+ T ) =

∫ s

t

a(y + T, s+ T ) dy =

∫ s

t

a(y, s) dy = B(t, s),

since a(t+ T, s+ T ) = a(t, s). Also, we have

B(t+ T, t+ T − τ(t+ T )) =

∫ t+T−τ(t+T )

t+T

a(u, t+ T − τ(t + T )) du.

Replacing by u = y + T , we get

B(t+ T, t+ T − τ(t+ T )) =

∫ t−τ(t+T )

t

a(y + T, t+ T − τ(t + T )) dy

=

∫ t−τ(t)

t

a(y, t− τ(t)) dy = B(t, t− τ(t)),

since a(t+ T, s+ T ) = a(t, s). �

Lemma 2. Suppose that conditions (k1), (k2), (k3) and (2.2) hold. Then, x ∈ PT

is a solution of equation (1.1) if and only if x ∈ PT satisfies

(2.8)

x(t) = Q (t, x (t− τ(t))) +

∫ t

t−τ(t)

(B(t, u) + a(u, u))g(x(u)) du

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)Q (s, x(s− τ(s))) ds

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(x(u)) du ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) du[a(s− τ(s), s − τ(s))

+B(s, s− τ(s))](1 − τ ′(s))g(x(s− τ(s))) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)F (x(s)) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) duG(s, x(s), x(s − τ(s))) ds.
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Proof: Multiplying both sides of (2.4) by the factor e
∫

t

0
a(u,u) du and integrating

from t− T to t, we obtain

(2.9)

∫ t

t−T

[

{x(s) −Q(s, x(s− τ(s)))} e
∫

s

0
a(u,u) du

]′

ds

=

∫ t

t−T

e
∫

s

0
a(u,u) dua(s, s)x(s) ds

−

∫ t

t−T

e
∫

s

0
a(u,u) dua(s, s)Q (s, x (s− τ (s))) ds

+

∫ t

t−T

e
∫

s

0
a(u,u) du d

ds

∫ s

s−τ(s)

[a(u, u) +B(s, u)]g(x(u)) du ds

−

∫ t

t−T

e
∫

s

0
a(u,u) du d

ds

∫ s

s−τ(s)

a(u, u)g(x(u)) du

+

∫ t

t−T

e
∫

s

0
a(u,u) duB(s, s− τ(s))(1 − τ ′(s))g(x(s − τ(s))) ds

+

∫ t

t−T

e
∫

s

0
a(u,u) duG(s, x(s), x(s − τ(s))) ds.

An integration by parts gives

∫ t

t−T

e
∫

s

0
a(u,u) du d

ds

∫ s

s−τ(s)

[a(u, u) +B(s, u)]g(x(u)) du ds

=

(

e
∫

s

0
a(u,u) du

∫ s

s−τ(s)

[a(u, u) +B(s, u)]g(x(u)) du

)t

t−T

−

∫ t

t−T

e
∫

s

0
a(u,u) dua(s, s)

∫ s

s−τ(s)

[a(u, u) +B(s, u)]g(x(u)) du ds

=
(

1 − e−
∫

t

t−T
a(u,u) du

)

e
∫

t

0
a(u,u) du

∫ t

t−τ(t)

[a(u, u) +B(t, u)]g(x(u)) du

−

∫ t

t−T

e
∫

s

0
a(u,u) dua(s, s)

∫ s

s−τ(s)

[a(u, u) +B(s, u)]g(x(u)) du ds.

Finally, we arrive

x(t)e
∫

t

0
a(u,u) du − x(t− T )e

∫

t−T

0
a(u,u) du

(2.10)

= e
∫

t

0
a(u,u) du

(

1 − e−
∫

t

t−T
a(u,u) du

)

Q (t, x (t− τ(t)))

−

∫ t

t−T

e−
∫

s

0
a(u,u) dua(s, s)Q(s, x(s− τ(s))) ds
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+
(

1 − e−
∫

t

t−T
a(u,u) du

)

e
∫

t

0
a(u,u) du

∫ t

t−τ(t)

[a(u, u) +B(t, u)]g(x(u)) du

−

∫ t

t−T

e
∫

s

0
a(u,u) dua(s, s)

∫ s

s−τ(s)

[a(u, u) +B(s, u)]g(x(u)) du ds

+

∫ t

t−T

e
∫

s

0
a(u,u) du[B(s, s− τ(s))

+ a(s− τ(s), s− τ(s))](1 − τ ′(s))g(x(s − τ(s))) ds

+

∫ t

t−T

e
∫

s

0
a(u,u) dua(s, s)F (x(s)) ds

+

∫ t

t−T

e
∫

s

0
a(u,u) duG(s, x(s), x(s − τ(s))) ds.

By dividing both sides of the above equation by (1 − e−
∫

t

t−T
a(u,u) du)e

∫

t

0
a(u,u) du

and using the fact that x(t) = x(t−T ), we obtain (2.8). The converse implication
is easily obtained by differentiating and using Leibniz rules. The proof is complete.

�

Krasnoselskii (see [14, Theorem 1.2.7] or [23]) combined the contraction map-
ping theorem and Schauder’s theorem and formulated the following hybrid, but
attractive, result.

Theorem 1 (Krasnoselskii [14, Theorem 1.2.7]). Let M be a closed convex

nonempty subset of a Banach space (S, ‖ · ‖). Suppose that

(i) the mapping A : M → S is completely continuous,

(ii) the mapping B : M → S is a contraction, and

(iii) x, y ∈M , implies Ax+By ∈M .

Then the mapping A+B has a fixed point in M .

This is a captivating result and has a number of interesting applications. In
recent year much attention has been paid to this theorem. Burton, in ([14, The-
orem 1.2.8]), observed that Krasnoselskii’s result can be more interesting in ap-
plication with certain changes. He introduced the concept of large contraction,
established a fixed point theorem which concerns this concept and extended Kras-
noselskii’s theorem as stated below.

Definition 2 (Large contraction). Let (M,d) be a metric space and B : M →M .
B is said to be a large contraction if ϕ, ψ ∈ M , with ϕ 6= ψ then d(Bϕ,Bψ) <
d(ϕ, ψ) and if for all ǫ > 0 there exists δ < 1 such that

[ϕ, ψ ∈M, d(ϕ, ψ) ≥ ǫ] =⇒ d (Bϕ,Bψ) ≤ δd(ϕ, ψ).

Theorem 2. Let (M,d) be a complete metric space and B be a large contraction.

Suppose there is an x ∈ M and L > 0, such that: d(x,Bnx) ≤ L for all n ≥ 1.

Then B has a unique fixed point in M .
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Theorem 3 (Krasnoselskii-Burton [14, Theorem 1.2.8]). Let M be a closed

bounded convex nonempty subset of a Banach space (S, ‖ · ‖). Suppose that

A, B map M into M and that

(i) for all x, y ∈M =⇒ Ax+By ∈M ,

(ii) A is completely continuous,

(iii) B is a large contraction.

Then there is a z ∈M with z = Az +Bz.

In what follows, we shall use this theorem to prove the existence of periodic
and positive solutions for (1.1).

3. Existence of periodic solutions

To apply Theorem 3, we need to define a Banach space S, a bounded convex
subset M of S and construct two mappings, one of which is a large contraction
and the other is completely continuous. So, let (S, ‖ · ‖) be the space PT endowed
with the supremum norm and define the operator H by

(3.1) ϕ(t) = (Bϕ)(t) + (Aϕ)(t) := (Hϕ)(t),

where A, B are defined on PT as follows

(3.2) (Bϕ)(t) = η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) [ϕ(s) − g(ϕ(s))] ds,

and

(3.3)

(Aϕ)(t) = Q (t, ϕ (t− τ(t))) +

∫ t

t−τ(t)

(B(t, u) + a(u, u))g(ϕ(u)) du

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)Q (s, ϕ (s− τ (s))) ds

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ(u)) du ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) du[a(s− τ(s), s− τ(s)) +B(s, s− τ(s))]

× (1 − τ ′(s))g(ϕ(s − τ(s))) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) duG (s, ϕ(s), ϕ(s − τ(s))) ds.

We need the following restrictions on the nonlinear term Q.

(k5) The function Q(t, x) is continuous in t and there exist bounded positive
periodic functions q1, q2 ∈ L1[0, T ], with period T , such that

(3.4) |Q (t, x)| ≤ q1 (t) |x| + q2 (t) ,



Periodic solution for integro-differential equations 31

for all x ∈ R.

Our first lemma in this section shows that A maps PT into itself and is com-
pletely continuous.

Lemma 3. Let A be given in (3.3). Suppose that conditions (k1)–(k5) hold.

Then A : PT → PT is completely continuous.

Proof: Let A be defined by (3.2). Clearly, Aϕ is continuous if ϕ is such. Having
in mind conditions (k1)–(k3) and using a change of variables, it can be seen that
(Aϕ)(t+T ) = (Aϕ)(t). To see that A is continuous, let {ϕn} ⊂ PT be an arbitrary
sequence such that ϕn → ϕ as n→ ∞. By the Dominated Convergence theorem
we obtain

lim
n→∞

|(Aϕn)(t) − (Aϕ)(t)|

≤ lim
n→∞

|Q (t, ϕn (t− τ(t))) −Q (t, ϕ (t− τ(t)))|

+ lim
n→∞

∫ t

t−τ(t)

|B(t, u) + a(u, u)| |g (ϕn(u)) − g (ϕ (u))| du

+ lim
n→∞

η
{

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

|a(u, u) +B(s, u)|

× |g(ϕn(u)) − g (ϕ (u))| du ds

+ lim
n→∞

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) |Q (s, ϕn (s− τ(s))) −Q (s, ϕ (s− τ(s)))| ds

+ lim
n→∞

∫ t

t−T

e−
∫

t

s
a(u,u) du |a(s− τ(s), s − τ(s)) +B(s, s− τ(s))| |1 − τ ′(s)|

× |g(ϕn(s− τ(s))) − g (ϕ (s− τ(s)))| ds

+ lim
n→∞

∫ t

t−T

e−
∫

t

s
a(u,u) du|G (s, ϕn(s), ϕn(s− τ(s)))

−G(s, ϕ(s), ϕ(s − τ(s)))| ds
}

≤ lim
n→∞

|Q (t, ϕn (t− τ (t))) −Q (t, ϕ (t− τ (t)))|

+K1

∫ t

t−τ(t)

lim
n→∞

|B(t, u) + a(u, u)| |ϕn(u) − ϕ(u)| du

+ η
{

K1

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) lim

n→∞

∫ s

s−τ(s)

|a(u, u) +B(s, u)|

× |ϕn(u) − ϕ(u)| du ds

+

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) lim

n→∞

|Q (s, ϕn (s− τ (s))) −Q (s, ϕ (s− τ(s)))| ds

+K1

∫ t

t−T

e−
∫

t

s
a(u,u) du lim

n→∞

|a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′(s)|
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× |ϕn(s− τ(s)) − ϕ (s− τ(s))| ds

+

∫ t

t−T

e−
∫

t

s
a(u,u) du lim

n→∞

|G (s, ϕn(s), ϕn(s− τ(s)))

−G(s, ϕ(s), ϕ(s − τ(s)))| ds
}

= 0.

Thus, A maps PT into PT and is continuous.
It remains to show that A is a compact function. Toward this, let S ⊂ PT be a

closed bounded subset and let R be a constant such that ‖ϕ‖ ≤ R for all ϕ ∈ S.
Let

q∗1 = max
u∈[0,T ]

q1(u), q∗2 = max
u∈[0,T ]

q2 (u) ,

σ = max
s∈[t−T,t]

{a(s, s)}, θ = max
t∈[t−T,t]

e−
∫

t

s
a(u,u) du.

Then,

|(Aϕ) (t)| ≤ q∗1R+ q∗2 + (K1L+ |g (0)|)

∫ t

t−τ(t)

|B(t, u) + a(u, u)| du

+ ηθ { σ (K1L+ |g(0)|)

∫ t

t−T

∫ s

s−τ(s)

|a(u, u) +B(s, u)| du ds

+ (K1L+ |g(0)|)

∫ t

t−T

|1 − τ ′(s)|
∣

∣a(s− τ(s), s − τ(s))

+B(s, s− τ(s))
∣

∣ ds+ σ

∫ t

t−T

qR(u) du+

∫ t

t−T

gR(u) du }

= D,

for some constant D. So, the family of functions Aϕ is uniformly bounded.
Again, let ϕ ∈ S. Without loss of generality, pick t1 < t2 such that t2− t1 < T ,

then

|(Aϕ) (t2) − (Aϕ) (t1)|

=| Q (t2, ϕ (t2 − τ (t2))) +

∫ t2

t2−τ(t2)

[a(u, u) +B(t2, u)] g(φ(u)) du

−η

∫ t2

t2−T

e−
∫

t2

s
a(u,u) dua(s, s)Q (s, x (s− τ (s))) ds

−η

∫ t2

t2−T

e−
∫

t2

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ(u)) du ds

+η

∫ t2

t2−T

e−
∫

t2

s
a(u,u) due−

∫

t

s
a(u,u) du[a(s− τ(s), s− τ(s)) +B(s, s− τ(s))]
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×(1 − τ ′(s))g(ϕ(s − τ(s))) ds

+η

∫ t2

t2−T

e−
∫

t2

s
a(u,u) duG (s, x(s), x(s − τ(s))) ds

−Q (t1, ϕ (t1 − τ (t1))) −

∫ t1

t1−τ(t1)

[a(u, u) +B(t2, u)] g(φ(u)) du

−η

∫ t1

t1−T

{e−
∫

t1

s
a(u,u) du[a(s− τ(s), s− τ(s)) +B(s, s− τ(s))]

×(1 − τ ′(s))g(ϕ(s − τ(s))) ds

−η

∫ t1

t1−T

e−
∫

t1

s
a(u,u) duG (s, x(s), x(s − τ(s))) ds

+η

∫ t1

t1−T

e−
∫

t1

s
a(u,u) dua(s, s)Q (s, x (s− τ (s))) ds

+η

∫ t1

t1−T

e−
∫

t1

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ(u)) du ds} | .

The calculus shows that

|(Aϕ) (t2) − (Aϕ) (t1)|

≤ |Q (t2, ϕ (t2 − τ (t2))) −Q (t1, ϕ (t1 − τ (t1)))|

+ |

∫ t2

t2−τ(t2)

[a(u, u) +B(t2, u)] g(φ(u)) du

−

∫ t1

t1−τ(t1)

[a(u, u) +B(t2, u)] g(φ(u)) du |

+ η

∫ t2

t1

[a(s, s)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| |g(φ(u))| du

+ |a(s− τ(s), s − τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)| |g(ϕ(s− τ(s)))|

+ a (s, s) |Q (s, x (s− τ(s)))| ds+ |G(s, x(s), x(s − τ(s)))|]e−
∫

t2

s
a(u,u) du ds

+ η

∫ t1

t2−T

[a(s, s)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| |g(φ(u))| du

+ |a(s− τ(s), s − τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)| |g(ϕ(s− τ(s)))|

+ a (s, s) |Q (s, x (s− τ(s)))| + |G(s, x(s), x(s − τ(s)))|]

×
∣

∣

∣
e−

∫

t2

s
a(u,u) du − e−

∫

t1

s
a(u,u) du

∣

∣

∣
ds

+ η

∫ t2−T

t1−T

[a(s, s)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| |g(φ(u))| du

+ |a(s− τ(s), s − τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)| |g(ϕ(s− τ(s)))|



34 I. Soulahia, A. Ardjouni, A. Djoudi

+ a(s, s) |Q (s, x(s− τ(s)))| + |G (s, x(s), x(s − τ(s)))|]e−
∫

t1

s
a(u,u) du ds

≤ |Q (t2, ϕ (t2 − τ (t2))) −Q (t1, ϕ (t1 − τ (t1)))|

+ |

∫ t2

t2−τ(t2)

[a(u, u) +B(t2, u)] g(φ(u)) du

−

∫ t1

t1−τ(t1)

[a(u, u) +B(t2, u)] g(φ(u)) du |

+ 2ηθ{

∫ t2

t1

[σ (K1L+ |g(0)|)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| du

+ (K1L+ |g(0)|) |a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)|

+ σqR (s) + gR (s)] ds}

+ η

∫ t1

t2−T

[σ (K1L+ |g(0)|)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| du

+ (K1L+ |g(0)|) |a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)|

+ σqR (s) + gR (s)]
∣

∣

∣
e−

∫

t2

s
a(u,u) du − e−

∫

t1

s
a(u,u) du

∣

∣

∣
ds.

Now, we observe that

|Q (t2, ϕ (t2 − τ (t2))) −Q (t1, ϕ (t1 − τ (t1)))| → 0,

|

∫ t2

t2−τ(t2)

[a(u, u) +B(t2, u)] g(φ(u)) du

−

∫ t1

t1−τ(t1)

[a(u, u) +B(t2, u)] g(φ(u)) du |→ 0,

and
∫ t2

t1

[σ (K1L+ |g(0)|)

∫ s

s−τ(s)

|a(u, u) + B(s, u)| du

+ (K1L+ |g (0)|) |a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)|

+ σqR (s) + gR (s)] ds→ 0

as (t2 − t1) → 0. Also,

∫ t1

t2−T

[σ (K1L+ |g(0)|)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| du

+ (K1L+ |g (0)|) |a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)|

+ σqR (s) + gR (s)]
∣

∣

∣
e−

∫

t2

s
a(u,u) du − e−

∫

t1

s
a(u,u) du

∣

∣

∣
ds

≤

∫ T

0

[(K1L+ |g (0)|)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| du
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+ (K1L+ |g (0)|) |a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′ (s)|

+ σqR (s) + gR (s)]
∣

∣

∣
e−

∫

t2

s
a(u,u) du − e−

∫

t1

s
a(u,u) du

∣

∣

∣
ds,

and |e−
∫

t2

s
a(u,u) du − e−

∫

t1

s
a(u,u) du| → 0 as (t2 − t1) → 0. Consequently, by the

Dominated Convergence Theorem, one can have

∫ t1

t2−T

[σ (K1L+ |g(0)|)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| du

+ (K1L+ |g(0)|) |a(s− τ(s), s− τ(s)) +B(s, s− τ(s))| |1 − τ ′(s)|

+ σqR (s) + gR (s)]
∣

∣

∣
e−

∫

t2

s
a(u,u) du − e−

∫

t1

s
a(u,u) du

∣

∣

∣
ds → 0,

as (t2 − t1) → 0. Thus, |(Aϕ)(t2) − (Aϕ)(t1)| → 0 as (t2 − t1) → 0 and the
limit does not depend on ϕ ∈ S. We conclude that the family of functions Aϕ
is equicontinuous on PT . By the Arzelà-Ascoli theorem, A is a compact function
and the proof is complete. �

Now, we state an important result implying that the mapping F given by (2.2)
is a large contraction. This result was already obtained in [1, Theorem 3.4] and
for convenience we present below its proof.

Proposition 1. Let ‖ · ‖ be the supremum norm,

M := {ϕ ∈ S, ‖ϕ‖ ≤ L} ,

and F defined by (2.2). Suppose that g has the following properties.

H1. g : R → R is continuous on [−L,L] and differentiable on (−L,L),
H2. The function g is strictly increasing on [−L,L].
H3. supt∈(−L,L) g

′(t) ≤ 1.

Then the mapping F in (2.2) is a large contraction on the set M .

Proof: Let φ, ϕ ∈ M with φ 6= ϕ. Then ϕ(t) 6= φ(t) for some t ∈ R. Let us
denote the set of all such t by D(φ, ϕ). That is

D (φ, ϕ) := {t ∈ R : φ(t) 6= ϕ(t)} .

For all t ∈ D(φ, ϕ) we have

(3.5)

|Fφ (t) − Fϕ (t)| = |φ (t) − g (φ (t)) − ϕ (t) + g (ϕ(t))|

= |φ(t) − ϕ(t)|

∣

∣

∣

∣

1 −

(

g (φ(t)) − g (ϕ(t))

φ (t) − ϕ (t)

)∣

∣

∣

∣

.

Since g is strictly increasing, we have

(3.6)
g (φ(t)) − g (ϕ(t))

φ(t) − ϕ(t)
> 0, for all t ∈ D (φ, ϕ) .
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For each fixed t ∈ D(φ, ϕ), define the interval Ut ⊂ [−L,L] by

Ut =

{

(ϕ(t), φ(t)) if φ(t) > ϕ(t),

(φ(t), ϕ(t)) if φ(t) < ϕ(t).

The Mean Value Theorem implies that for each fixed t ∈ D(φ, ϕ) there exists a
real number ct ∈ Ut such that

g (φ (t)) − g (ϕ (t))

φ (t) − ϕ (t)
= g′ (ct) .

By (H2)–(H3) we have

(3.7) 0 ≤ inf
u∈(−L,L)

g′(u) ≤ inf
u∈Ut

g′(u) ≤ g′ (ct) ≤ sup
u∈Ut

g′(u) ≤ sup
u∈(−L,L)

g′ (u) ≤ 1.

Hence, by (3.5)–(3.7) we obtain

(3.8) |Fφ (t) − Fϕ (t)| ≤

∣

∣

∣

∣

1 − inf
u∈(−L,L)

g′ (u)

∣

∣

∣

∣

|φ(t) − ϕ(t)| ,

for all t ∈ D(φ, ϕ). This implies that F is a large contraction in the supremum
norm. To see this, choose a fixed ǫ ∈ (0, 1) and assume that φ and ϕ are two
functions in M satisfying

ǫ ≤ sup
t∈D(φ,ϕ)

|φ(t) − ϕ(t)| = ‖φ− ϕ‖ .

If |φ(t) − ϕ(t)| ≤ ǫ
2 for some t ∈ D(φ, ϕ), then by (3.7) and (3.8) we get

(3.9) |Fφ (t) − Fϕ (t)| ≤ |φ(t) − ϕ(t)| ≤
1

2
‖φ− ϕ‖ .

Since g is continuous and strictly increasing the function g(u+ ǫ
2 ) − g(u) attains

its minimum on the closed and bounded interval [−L,L].
Consequently, if ǫ

2 < |φ(t)−ϕ(t)| for some t ∈ D(φ, ϕ), then by (H2) and (H3)
we conclude that

1 ≥
g (φ(t)) − g (ϕ(t))

φ(t) − ϕ(t)
> υ,

where

υ :=
1

2L
min

{

g
(

u+
ǫ

2

)

− g(u) : u ∈ [−L,L]
}

> 0.

Hence (3.5) implies

(3.10) |Fφ (t) − Fϕ (t)| ≤ (1 − υ) ‖φ(t) − ϕ(t)‖ .

Therefore, combining (3.9) and (3.10) we obtain

|Fφ (t) − Fϕ (t)| ≤ ς ‖φ− ϕ‖ ,
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where ς = max{ 1
2 , 1 − υ} < 1. The proof is complete. �

We shall prove that the mappingH given by (3.1) has a fixed point which solves
(1.1) whenever its derivative exists. For that proof we need further conditions on
the nonlinear term G.

(k6) There exist positive periodic functions g1, g2, g3 ∈ L1[0, T ] with period T
such that

|G(t, x, y)| ≤ g1 (t) |x| + g2(t)|y| + g3(t),

for all x, y ∈ R.

Lemma 4. Suppose that conditions (k5) and (k6) hold. Suppose further that

(k1L+ |g (0)|)

∫ t

t−τ(t)

|B(t, u) + a(u, u)| du ≤
R1

2
L,(3.11)

|1 − τ ′(t)| |a(t− τ(t), t − τ(t)) +B(t, t− τ(t))| ≤ ζa(t, t),(3.12)

ζ (k1L+ |g (0)|) ≤ R2L,(3.13)

q1 (t)L+ q2 (t) ≤ δL,(3.14)

[g1 (t) + g2 (t)]L+ g3(t) ≤ βLa (t, t) ,(3.15)

J (R1 +R2 + 2δ + β) ≤ 1,(3.16)

where β, δ, R1, R2 and J are constants with J > 3.

For A defined by (3.3), if ϕ ∈M , then |(Aϕ)(t)| ≤ L/J < L for all t.

Proof: Let ϕ ∈M , then ‖ϕ‖ ≤ L. Let A be defined by (3.2), we have

|(Aϕ) (t)|

≤ |Q (t, ϕ (t− τ (t)))| +

∫ t

t−τ(t)

|B(t, u) + a(u, u)| |g(ϕ(u))| du

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) |Q (s, x (s− τ(s)))| ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

|a(u, u) +B(s, u)| |g(ϕ(u))| du ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) du |a(s− τ(s), s − τ(s)) +B(s, s− τ(s))|

× |1 − τ ′(s)| |g(ϕ(s− τ(s)))| ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) du |G(s, ϕ(s), ϕ(s − τ(s)))| ds

≤ q1 (t)L+ q2(t) +
R1

2
L+

R1

2
Lη

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) ds
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+ [q1 (t)L+ q2 (t)] η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) ds

+ [ζ (k1L+ |g(0)|) + βL]
(

1 − e−
∫

t

t−T
a(u,u) du

)−1
∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) ds

≤ (R1 + 2δ +R2 + β)L ≤
L

J
< L.

Therefore, A maps M into itself. �

We need Bϕ, and Aϕ + Bψ to reside in M , whenever ϕ, ψ ∈ M . For that
purpose, we require that

(3.17) max (|F (L)| , |F (−L)|) ≤
(J − 1)L

J
,

where F (x) = x− g(x) is the one of (2.2).

Lemma 5. Suppose (k1)–(k6), (3.11)–(3.17) and all the conditions of Proposi-

tion 1 hold and let A, B be the functions defined in (3.3) and (3.2). If ϕ, ψ ∈M
are arbitrary, then

Aϕ+ Bψ : M →M.

Moreover, B is a large contraction on M with a unique fixed point in M .

Proof: Let B be defined by (3.2). Obviously, Bϕ is continuous if ϕ is such.
A change of variables shows that (Bϕ) (t+ T ) = (Bϕ) (t). From Proposition 1
we know that ϕ−g (ϕ) is a large contraction in the supremum norm. Let ϕ, ψ ∈M
be arbitrary functions. For any ǫ, from the proof of that proposition, we have
found a ς < 1, such that

‖Bϕ− Bψ‖ ≤
(

1 − e−
∫

t

t−T
a(u,u) du

)−1
∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)ς ‖ϕ− ψ‖ ds

≤ ς ‖ϕ− ψ‖ .

Furthermore, using the definition of B, the condition (3.17) and the mono-
tonicity of F of (2.2), we see that

|(Bψ) (t)| ≤
(

1 − e−
∫

t

t−T
a(u,u) du

)−1
∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)|F (s)| ds

≤
(J − 1)L

J

(

1 − e−
∫

t

t−T
a(u,u) du

)−1
∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) ds

≤
(J − 1)L

J
≤ L.



Periodic solution for integro-differential equations 39

Thus, B maps M into M . Next, remembering the majoration of |(Aϕ)(t)| given
in the proof of Lemma 4 and using the last one on |(Bψ)(t)| we obtain

|(Aϕ)(t) + (Bψ) (t)| ≤ |(Aϕ)(t)| + |(Bψ)(t)|

≤
L

J
+

(J − 1)L

J
= L.

Hence, Aϕ + Bψ resides in M whenever ϕ, ψ ∈ M . This completes the proof.
�

Theorem 4. Let (S, ‖ · ‖) be the Banach space of continuous T-periodic real

functions and

M = {ϕ ∈ S, ‖ϕ‖ ≤ L} ,

where L is positive constant. Suppose (k1)–(k6), (3.11)–(3.17) and all conditions

of the Proposition 1 hold. Then equation (1.1) processes a T- periodic solution

in the subset M .

Proof: By Lemma 2, ϕ is a solution of (1.1) if

ϕ = Aϕ+ Bϕ,

where A and B are given by (3.3), (3.2) respectively. By Lemma (4), A : M →M
is completely continuous. By Lemma (5), Aϕ + Bψ ∈ M , whenever ϕ, ψ ∈ M .
Moreover, B : M →M is a large contraction. Clearly, all hypotheses of Theorem 3
of Krasnoselskii-Burton are satisfied. Thus, there exists a fixed point ϕ ∈M such
that ϕ = Aϕ + Bϕ. Consequently, equation (1.1) has a T- periodic solution
in M . �

4. Existence of nonnegative periodic solutions

Now, we turn our attention to the positivity of solutions of (1.1). But positive
solutions need some careful adjustments. So, we begin by defining new sufficient
quantities to reach our goal. Let

(4.1)

θ∗ = min
t∈[t−T,t]

e−
∫

t

s
a(u,u) du, γ∗ = max

t∈[t−T,t]
e−

∫

t

s
a(u,u) du,

f(t, x) =

∫ t

t−τ(t)

(B(t, u) + a(u, u))g(x(u)) du,

where θ∗and γ∗ are positive constants. Given a constant 0 < K, define the set

(4.2) M2 := {ϕ ∈ PT : 0 ≤ ϕ ≤ K, t ∈ [0, T ]} .

We ask that the following conditions hold.

(k7) There exist constants L∗ > 0 such that 0 ≤ Q(t, ϕ) ≤ L∗ϕ for all ϕ ∈ M2.
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In the case f(t, x) ≥ 0, we assume that there exist a positive constant E1 such
that

0 ≤ f(t, x) ≤ E1x, for all x ∈ M2,(4.3)

L∗ + E1 < 1,(4.4)

(4.5)

0 ≤ −a(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ) du

+ [a(s− τ(s), s− τ(s)) +B(s, s− τ(s))](1 − τ ′(s))g(ϕ)

− a(s, s)Q (s, ϕ) +G(s, ϕ, ϕ)

and

(4.6)

[a(s− τ(s), s − τ(s)) +B(s, s− τ(s))](1 − τ ′(s))g(ϕ)

− a(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ) du − a(s, s)Q (s, ϕ)

+G(s, ϕ, ϕ) + a(s, s) [ψ − g(ψ)]

≤
(1 − L∗ − E1)K

ηγ∗T
,

for all ϕ, ψ ∈ M2 and s ∈ [t− T, t].

Lemma 6. Suppose that conditions (k1)–(k5), (k7), (4.1)–(4.6) hold. Then A
and B maps M2 → M2.

Proof: Let A be defined by (3.3). A similar argumentation as in the proof of
Lemma 3 shows that (Aϕ)(t + T ) = (Aϕ)(t). Furthermore, for any ϕ ∈ M2, by
(4.1)-(4.6), we have

0 ≤ (Aϕ)(t)

≤ L∗K + E1K +
(1 − L∗ − E1)K

ηγ∗T
η

∫ t

t−T

e−
∫

t

s
a(u,u) du ds

≤ K.

That is Aϕ ∈ M2.
Likewise, let B be defined by (3.2), then (Bϕ)(t + T ) = (Bϕ)(t) is obtained

as in the proof of Lemma 5. For any ϕ ∈ M2, we have

0 ≤ (Bϕ) (t) ≤ η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s) [ϕ(s) − g(ϕ(s))] ds

≤
(1 − L∗ − E1)K

ηγ∗T
η

∫ t

t−T

e−
∫

t

s
a(u,u) du ds

≤ K,
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since (4.4) hold. Thus, Bϕ ∈ M2. �

Theorem 5. Let (S, ‖ · ‖) be the Banach space of continuous T-periodic real

functions and M2 = {ϕ ∈ S, 0 ≤ ϕ ≤ K, t ∈ [0, T ]}, where K is a positive

constant. Suppose that conditions (k1)–(k5), (k7), and (4.1)–(4.6) hold. Then

there exists a nonnegative T-periodic solution of (1.1).

Proof: By Lemma 2, ϕ is a solution of (1.1) if

ϕ = Aϕ+ Bϕ,

where A and B are given by (3.3), (3.2) respectively. By Lemma 6, A,B : M2 →
M2. By Lemma 3, A is completely continuous. Moreover, B is a large contraction.
We just need to show that condition (iii) of Theorem 3 is satisfied. Toward this,
let ϕ, ψ ∈ M2, then

Aϕ (t) + Bψ (t) ≥ 0,

Aϕ (t) + Bψ (t)

= Q(t, ϕ (t− τ(t))) + f(t, ϕ)

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ(u)) du ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) du[a(s− τ(s), s − τ(s))

+B(s, s− τ(s))](1 − τ ′(s))g(ϕ(s − τ(s))) ds

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)Q (s, x (s− τ(s))) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)F (ψ (s)) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) duG (s, ϕ(s), ϕ(s − τ(s))) ds

≤ L∗K + E1K + ηγ∗T

(

(1 − L∗ − E1)K

ηγ∗T

)

= K.

By Theorem 3 the operator H has a fixed point in M2. This fixed point is a
solution of (1.1) and the proof is complete. �

In the case f(t, x) ≤ 0, we substitute conditions (4.3)–(4.6) with the following
conditions respectively. We assume that there exists a negative constant E2 such
that

E2x ≤ f(t, x) ≤ 0, for all x ∈ M2,(4.7)

−E2 + L∗ < 1,(4.8)
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(4.9)

−E2

ηθ∗T
≤ −a(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ) du

+ [a(s− τ(s), s − τ(s)) +B(s, s− τ(s))](1 − τ ′(s))g(ϕ)

− a(s, s)Q (s, ϕ) +G(s, ϕ, ϕ) ds

and

[a(s− τ(s), s − τ(s)) +B(s, s− τ(s))](1 − τ ′(s))g(ϕ)(4.10)

− a(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ) du

− µ(s)ϕ+G(s, ϕ, ϕ) + a(s, s)[ψ − g(ψ)]

≤
(1 − L∗)K

ηγ∗T
,

for all ϕ, ψ ∈ M2 and s ∈ [t− T, t].

Theorem 6. Suppose (k1)–(k5), (k7), (4.1), (4.7)–(4.10) hold. Then, equation

(1.1) has a T-periodic nonnegative solution x in the subset M2.

Proof: As in the proof of Theorem 5, we can show easily that A,B maps:
M2 → M2. We just need to show that condition (iii) of Theorem 3 is satisfied.
Let ϕ, ψ ∈ M2. Then

Aϕ(t) + Bψ (t)

= Q(t, ϕ(t− τ(t))) + f(t, ϕ)

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)

∫ s

s−τ(s)

(a(u, u) +B(s, u))g(ϕ(u)) du ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) du[a(s− τ(s), s − τ(s)) +B(s, s− τ(s))]

× (1 − τ ′(s))g(ϕ(s− τ(s))) ds

− η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)Q (s, x (s− τ(s))) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) dua(s, s)F (ψ(s)) ds

+ η

∫ t

t−T

e−
∫

t

s
a(u,u) duG(s, ϕ(s), ϕ(s − τ(s))) ds

≤ L∗K + ηγ∗T

(

(1 − L∗)K

ηγ∗T

)

= K.

Likewise

Aϕ(t) + Bψ(t) ≥ h(t, ϕ) + ηθ∗T

(

−E2

ηθ∗T

)
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≥
E2

ηθ∗T
+ ηθ∗T

(

−E2

ηθ∗T

)

≥ 0.

By Theorem 3 the operator H has a fixed point in M2. This fixed point is
a solution of (1.1) and the proof is complete. �
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