[1] Agarwal, R. P., Dragomir, S. S.:
A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), 3785-3812 Corrigendum
Comput. Math. Appl. 61 (2011), 2931.
DOI 10.1016/j.camwa.2010.04.014 |
MR 2651854 |
Zbl 1221.26023
[2] Bergström, H.:
A triangle-inequality for matrices. Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949 Johan Grundt Tanums Forlag, Oslo (1952), 264-267.
MR 0053064 |
Zbl 0049.29501
[3] Bullen, P. S.:
Handbook of Means and Their Inequalities. Mathematics and Its Applications 560 Kluwer Academic Publishers, Dordrecht (2003).
MR 2024343 |
Zbl 1035.26024
[5] Dragomir, S. S.:
A converse result for Jensen's discrete inequality via Grüss' inequality and applications in information theory. An. Univ. Oradea, Fasc. Mat. 7 (1999/2000), 178-189.
MR 1774897
[6] Dragomir, S. S., Ionescu, N. M.:
Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), 71-78.
MR 1325895 |
Zbl 0836.26009
[7] Furuichi, S., Minculete, N., Mitroi, F.-C.:
Some inequalities on generalized entropies. J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 2012:226, 16 pages.
MR 3016021 |
Zbl 1279.26046
[10] Mărghidanu, D.:
Generalizations and refinements for Bergström and Radon's inequalities. J. Sci. Arts 8 (2008), 57-62.
Zbl 1194.26032
[11] Mărghidanu, D., Díaz-Barrero, J. L., Rădelescu, S.:
New refinements of some classical inequalities. Math. Inequal. Appl. 12 (2009), 513-518.
MR 2540974 |
Zbl 1178.26024
[12] Mortici, C.:
A new refinement of the Radon inequality. Math. Commun. 16 (2011), 319-324.
MR 2900757 |
Zbl 1244.26046
[14] Niculescu, C., Persson, L.-E.:
Convex Functions and Their Applications. A Contemporary Approach. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 23 Springer, New York (2006).
MR 2178902 |
Zbl 1100.26002
[18] Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Wien. Ber. 122 German (1913), 1295-1438.