Previous |  Up |  Next

Article

Keywords:
Radon's inequality; Jensen's inequality; Hölder's inequality; Liapunov's inequality
Summary:
We establish that the inequality of Radon is a particular case of Jensen's inequality. Starting from several refinements and counterparts of Jensen's inequality by Dragomir and Ionescu, we obtain a counterpart of Radon's inequality. In this way, using a result of Simić we find another counterpart of Radon's inequality. We obtain several applications using Mortici's inequality to improve Hölder's inequality and Liapunov's inequality. To determine the best bounds for some inequalities, we used Matlab program for different cases.
References:
[1] Agarwal, R. P., Dragomir, S. S.: A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), 3785-3812 Corrigendum Comput. Math. Appl. 61 (2011), 2931. DOI 10.1016/j.camwa.2010.04.014 | MR 2651854 | Zbl 1221.26023
[2] Bergström, H.: A triangle-inequality for matrices. Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949 Johan Grundt Tanums Forlag, Oslo (1952), 264-267. MR 0053064 | Zbl 0049.29501
[3] Bullen, P. S.: Handbook of Means and Their Inequalities. Mathematics and Its Applications 560 Kluwer Academic Publishers, Dordrecht (2003). MR 2024343 | Zbl 1035.26024
[4] Ciurdariu, L.: On Bergström inequality for commuting Gramian normal operators. J. Math. Inequal. 4 (2010), 505-516. DOI 10.7153/jmi-04-45 | MR 2777267 | Zbl 1214.47024
[5] Dragomir, S. S.: A converse result for Jensen's discrete inequality via Grüss' inequality and applications in information theory. An. Univ. Oradea, Fasc. Mat. 7 (1999/2000), 178-189. MR 1774897
[6] Dragomir, S. S., Ionescu, N. M.: Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), 71-78. MR 1325895 | Zbl 0836.26009
[7] Furuichi, S., Minculete, N., Mitroi, F.-C.: Some inequalities on generalized entropies. J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 2012:226, 16 pages. MR 3016021 | Zbl 1279.26046
[8] Gavrea, B.: On an inequality for convex functions. Gen. Math. 19 (2011), 37-40. MR 2879075 | Zbl 1265.26070
[9] Jiang, S.-J., Pang, L.-P., Shen, J.: Existence of solutions of generalized vector variational-type inequalities with set-valued mappings. Comput. Math. Appl. 59 (2010), 1453-1461. DOI 10.1016/j.camwa.2009.11.010 | MR 2591935 | Zbl 1189.49009
[10] Mărghidanu, D.: Generalizations and refinements for Bergström and Radon's inequalities. J. Sci. Arts 8 (2008), 57-62. Zbl 1194.26032
[11] Mărghidanu, D., Díaz-Barrero, J. L., Rădelescu, S.: New refinements of some classical inequalities. Math. Inequal. Appl. 12 (2009), 513-518. MR 2540974 | Zbl 1178.26024
[12] Mortici, C.: A new refinement of the Radon inequality. Math. Commun. 16 (2011), 319-324. MR 2900757 | Zbl 1244.26046
[13] Nhan, N. D. V., Duc, D. T., Tuan, V. K.: Weighted norm inequalities for a nonlinear transform. Comput. Math. Appl. 61 (2011), 832-839. DOI 10.1016/j.camwa.2010.12.031 | MR 2770487 | Zbl 1217.44001
[14] Niculescu, C., Persson, L.-E.: Convex Functions and Their Applications. A Contemporary Approach. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 23 Springer, New York (2006). MR 2178902 | Zbl 1100.26002
[15] Pečarić, J., Perić, J.: Remarks on the paper ``Jensen's inequality and new entropy bounds'' of S. Simić. J. Math. Inequal. 6 (2012), 631-636. DOI 10.7153/jmi-06-61 | MR 3053041 | Zbl 1257.26024
[16] Pop, O. T.: About Bergström's inequality. J. Math. Inequal. 3 (2009), 237-242. DOI 10.7153/jmi-03-24 | MR 2542302 | Zbl 1177.26047
[17] Qiang, H., Hu, Z.: Generalizations of Hölder's and some related inequalities. Comput. Math. Appl. 61 (2011), 392-396. DOI 10.1016/j.camwa.2010.11.015 | MR 2754147 | Zbl 1211.26021
[18] Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Wien. Ber. 122 German (1913), 1295-1438.
[19] Simic, S.: Jensen's inequality and new entropy bounds. Appl. Math. Lett. 22 (2009), 1262-1265. DOI 10.1016/j.aml.2009.01.040 | MR 2532551 | Zbl 1173.26308
Partner of
EuDML logo