[1] Amann, H.:
Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. Nonlinear Problems in Mathematical Physics and Related Topics II. In Honour of Professor O. A. Ladyzhenskaya Int. Math. Ser. (N.Y.) 2 Kluwer Academic Publishers, New York (2002), 1-28 M. S. Birman et al.
MR 1971987 |
Zbl 1201.76038
[6] Farwig, R., Galdi, G. P., Sohr, H.:
Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of {${\mathbb R}^2$}. J. Differ. Equations 227 (2006), 564-580.
DOI 10.1016/j.jde.2005.10.009 |
MR 2237679
[7] Farwig, R., Galdi, G. P., Sohr, H.:
Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data. Nonlinear Elliptic and Parabolic Problems. A Special Tribute to the Work of Herbert Amann, Zürich, Switzerland, 2004 Progr. Nonlinear Differential Equations Appl. 64 Birkhäuser, Basel (2005), 113-136 M. Chipot et al.
MR 2185213 |
Zbl 1246.35148
[9] Farwig, R., Kozono, H., Sohr, H.:
Very weak, weak and strong solutions to the instationary Navier-Stokes system. Topics on Partial Differential Equations Jindřich Nečas Cent. Math. Model. Lect. Notes 2 Matfyzpress, Praha (2007), 1-54 P. Kaplický et al.
MR 2856664
[12] Fichera, G.: The trace operator. Sobolev and Ehrling lemmas. Linear Elliptic Differential Systems and Eigenvalue Problems Lecture Notes in Mathematics 8 Springer, Berlin (1965), 24-29.
[14] Franzke, M.: Die Navier-Stokes-Gleichungen in "Offnungsgebieten. PhD thesis Shaker, Aachen German (2000).
[15] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994).
MR 1284205 |
Zbl 0949.35004
[17] Kudrjavcev, L. D.:
An imbedding theorem for a class of functions defined in the whole space or in the half-space. I. Transl., Ser. 2, Am. Math. Soc. 74 (1968), 199-225 translation from Mat. Sb., N. Ser. 69 (1966), 616-639 Russian.
MR 0206704
[18] Kudrjavcev, L. D.:
Imbedding theorems for classes of functions defined in the whole space or in the half-space. {II}. Transl., Ser. 2, Am. Math. Soc. 74 (1968), 227-260 translation from Mat. Sb., N. Ser. 70 3-35 (1966), Russian.
MR 0206705
[19] Riechwald, P. F.:
Interpolation of sum and intersection spaces of {$L^q$}-type and applications to the Stokes problem in general unbounded domains. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 58 (2012), 167-181.
DOI 10.1007/s11565-011-0140-6 |
MR 2915345 |
Zbl 1307.46012
[20] Riechwald, P. F.:
Very Weak Solutions to the Navier-Stokes Equations in General Unbounded Domains. PhD thesis TU Darmstadt, Darmstadt; Fachbereich Mathematik (Diss.), München (2011).
Zbl 1252.35005
[22] Schumacher, K.:
The Navier-Stokes Equations with Low-Regularity Data in Weighted Function Spaces. PhD thesis TU Darmstadt, Fachbereich Mathematik (Diss.), Darmstadt (2007).
Zbl 1134.35088
[23] Temam, R.:
Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2 North-Holland Publishing, Amsterdam (1977).
MR 0769654 |
Zbl 0383.35057