Previous |  Up |  Next

Article

Keywords:
upper asymptotic density; maximal density
Summary:
Let $M$ be a given nonempty set of positive integers and $S$ any set of nonnegative integers. Let $\overline \delta (S)$ denote the upper asymptotic density of $S$. We consider the problem of finding \[\mu (M):=\sup _{S}\overline \delta (S),\] where the supremum is taken over all sets $S$ satisfying that for each $a,b\in S$, $a-b \notin M.$ In this paper we discuss the values and bounds of $\mu (M)$ where $M = \{a,b,a+nb\}$ for all even integers and for all sufficiently large odd integers $n$ with $a<b$ and $\gcd (a,b)=1.$
References:
[1] Cantor, D. G., Gordon, B.: Sequences of integers with missing differences. J. Comb. Theory, Ser. A 14 281-287 (1973). DOI 10.1016/0097-3165(73)90003-4 | MR 0371849 | Zbl 0277.10043
[2] Gupta, S.: Sets of integers with missing differences. J. Comb. Theory, Ser. A 89 Article ID jcta.1999.3003, 55-69 (2000). DOI 10.1006/jcta.1999.3003 | MR 1736136 | Zbl 0956.11006
[3] Gupta, S., Tripathi, A.: Density of $M$-sets in arithmetic progression. Acta Arith. 89 255-257 (1999). DOI 10.4064/aa-89-3-255-257 | MR 1691854 | Zbl 0932.11009
[4] Haralambis, N. M.: Sets of integers with missing differences. J. Comb. Theory, Ser. A 23 22-33 (1977). DOI 10.1016/0097-3165(77)90076-0 | MR 0453689 | Zbl 0359.10047
[5] Liu, D. D., Zhu, X.: Fractional chromatic number and circular chromatic number for distance graphs with large clique size. J. Graph Theory 47 129-146 (2004). DOI 10.1002/jgt.20020 | MR 2082743
[6] Liu, D. D., Zhu, X.: Fractional chromatic number of distance graphs generated by two-interval sets. Eur. J. Comb. 29 1733-1743 (2008). DOI 10.1016/j.ejc.2007.09.007 | MR 2431764 | Zbl 1246.05058
[7] Motzkin, T. S.: Unpublished problem collection.
[8] Pandey, R. K., Tripathi, A.: A note on a problem of Motzkin regarding density of integral sets with missing differences. J. Integer Seq. (electronic only) 14 Article 11.6.3, 8 pages (2011). MR 2811219
[9] Pandey, R. K., Tripathi, A.: On the density of integral sets with missing differences from sets related to arithmetic progressions. J. Number Theory 131 634-647 (2011). DOI 10.1016/j.jnt.2010.09.013 | MR 2753268 | Zbl 1229.11044
[10] Pandey, R. K., Tripathi, A.: On the density of integral sets with missing differences. {Combinatorial Number Theory. Proceedings of the 3rd `Integers Conference 2007', Carrollton, USA, 2007} B. Landman et al. Walter de Gruyter, Berlin 157-169 (2009). MR 2521959 | Zbl 1218.11009
[11] Rabinowitz, J. H., Proulx, V. K.: An asymptotic approach to the channel assignment problem. SIAM J. Algebraic Discrete Methods 6 507-518 (1985). DOI 10.1137/0606050 | MR 0791178 | Zbl 0579.05058
Partner of
EuDML logo