[1] Anane, A.:
Simplicity and isolation of first eigenvalue of the $p$-Laplacian with weight. C. R. Acad. Sci., Paris, Sér. I 305 French (1987), 725-728.
MR 0920052 |
Zbl 0633.35061
[2] Anane, A., Tsouli, N.:
On the second eigenvalue of the $p$-Laplacian. Nonlinear Partial Differential Equations. Based on the International Conference on Nonlinear Analysis, Fés, Morocco, 1994 Pitman Res. Notes Math. Ser. 343 Longman, Harlow (1996), 1-9 A. Benkirane et al.
MR 1417265 |
Zbl 0854.35081
[3] Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G.:
Time-periodic oscillations in suspension bridges: Existence of unique solutions. Nonlinear Anal., Real World Appl. 1 (2000), 345-362.
MR 1791531 |
Zbl 0989.74031
[7] Pino, M. del, Drábek, P., Manásevich, R.:
The Fredholm alternative at the first eigenvalue for the one dimensional $p$-Laplacian. J. Differ. Equations 151 (1999), 386-419.
DOI 10.1006/jdeq.1998.3506 |
MR 1669705
[9] Drábek, P.:
Geometry of the energy functional and the Fredholm alternative for the $p$-Laplacian in higher dimensions. Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. (electronic only) 8 (2002), 103-120.
MR 1990298 |
Zbl 1114.35318
[10] Drábek, P.:
Solvability and Bifurcations of Nonlinear Equations. Pitman Research Notes in Mathematics Series 264 Longman Scientific, Harlow; John Wiley, New York (1992).
MR 1175397 |
Zbl 0753.34002
[11] Drábek, P.:
On the global bifurcation for a class of degenerate equations. Ann. Mat. Pura Appl. (4) 159 (1991), 1-16.
MR 1145086 |
Zbl 0814.34018
[13] Drábek, P.:
Ranges of homogeneous operators and their perturbations. Čas. Pěst. Mat. 105 (1980), 167-183.
MR 0573109 |
Zbl 0427.47048
[16] Drábek, P., Holubová, G., Matas, A., Nečesal, P.:
Nonlinear models of suspension bridges: Discussion of the results. Mathematical and computer modeling in science and engineering. Appl. Math., Praha 48 (2003), 497-514.
DOI 10.1023/B:APOM.0000024489.96314.7f |
MR 2025959
[18] Drábek, P., Kufner, A., Nicolosi, F.:
Quasilinear Elliptic Equations with Degenerations and Singularities. De Gruyter Series in Nonlinear Analysis and Applications 5 Walter de Gruyter, Berlin (1997).
MR 1460729 |
Zbl 0894.35002
[21] Drábek, P., Robinson, S. B.:
On the Fredholm alternative for the Fučík spectrum. Abstr. Appl. Anal. 2010 (2010), Article ID 125464, 20 pages.
MR 2754193 |
Zbl 1214.47011
[24] Elbert, A.:
A half-linear second order differential equation. Qualitative Theory of Differential Equations, Vol. I, Szeged, 1979 Colloq. Math. Soc. János Bolyai 30 North-Holland, Amsterdam (1981), 153-180 M. Farkas.
MR 0680591 |
Zbl 0511.34006
[25] Fučík, S.:
Solvability of Nonlinear Equations and Boundary Value Problems. Mathematics and Its Applications 4 D. Reidel Publishing, Dordrecht (1980).
MR 0620638
[26] Fučík, S.:
Boundary value problems with jumping nonlinearities. Čas. Pěst. Mat. 101 (1976), 69-87.
MR 0447688 |
Zbl 0332.34016
[28] Kováčik, O., Rákosník, J.:
On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618.
MR 1134951
[29] Krejčí, P.:
On solvability of equations of the 4th order with jumping nonlinearities. Čas. Pěst. Mat. 108 (1983), 29-39.
MR 0694138 |
Zbl 0515.35013
[30] Landesman, E. M., Lazer, A. C.:
Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623.
MR 0267269 |
Zbl 0193.39203
[31] Lazer, A. C., McKenna, P. J.:
Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32 (1990), 537-578.
DOI 10.1137/1032120 |
MR 1084570 |
Zbl 0725.73057
[33] Švarc, R.:
The solution of a Fučík's conjecture. Commentat. Math. Univ. Carol. 25 (1984), 483-517.
MR 0775566 |
Zbl 0562.47049