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Abstract. General mathematical theories usually originate from the investigation of par-
ticular problems and notions which could not be handled by available tools and methods.
The Fučík spectrum and the p-Laplacian are typical examples in the field of nonlinear
analysis. The systematic study of these notions during the last four decades led to several
interesting and surprising results and revealed deep relationship between the linear and the
nonlinear structures. This paper does not provide a complete survey. We focus on some
pioneering works and present some contributions of the author. From this point of view the
list of references is by no means exhaustive.
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1. Introduction

One of the most important and gifted Czech mathematicians of the second half of

the twentieth century, Svatopluk Fučík, investigated, at the beginning of the 1970s,

semilinear equations of the form

(1.1) −u′′(x) = f(x, u(x)), x ∈ (a, b) ⊂ R

subject to various kinds of boundary conditions. He applied topological methods

based on the degree theory to get existence results both for (1.1) and also for its

higher dimensional analogue

−∆u(x) = f(x, u(x)), x ∈ Ω ⊂ R
N .

The research has been supported by the Grant Agency of the Czech Republic, project
No. 13-00863S.
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Asymptotic properties of the nonlinear function f with respect to the second variable

play the crucial role. In particular, if

(1.2) f(·, s) ∼ λs as s → ±∞,

the knowledge of the set of all eigenvalues of

−∆u(x) = λu(x), x ∈ Ω

is an important tool for proving the existence of a solution. Problems of this type

are studied systematically in two classical monographs by Fučík, Nečas, Souček and

Souček [27] and Fučík [25].

It is an interesting fact that in 1976 two papers were published independently by

Fučík [26] and Dancer [6], where the asymptotic condition (1.2) was generalized to

(1.3) f(·, s) ∼ µs as s → ∞, f(·, s) ∼ νs as s → −∞

possibly with µ 6= ν. More precisely, the answer to the following question was the

key to formulate existence and nonexistence results for the boundary value problem

(1.4) −u′′(x) = f(x, u(x)), x ∈ (0, 1), u(0) = u(1) = 0:

Q u e s t i o n : Find all couples (µ, ν) ∈ R
2 for which there exists a nontrivial

solution of

(1.5)

{

−u′′(x)− µu+(x) + νu−(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0.

Using the uniqueness of the initial value problem associated with the equation

in (1.5), Fučík and Dancer provided an affirmative answer to this question. The set

of all (µ, ν) ∈ R
2 for which (1.5) has a nonzero solution is a collection of “hyperbolas”

which can be expressed analytically and look like curves in Figure 1.

µ

ν

1 4 9 16

Figure 1. The Fučík spectrum.
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Much later the collection of these curves was called the Fučík spectrum of (1.5).

Under assumption (1.3) and depending on the position of (µ, ν) with respect to the

Fučík spectrum, Fučík and Dancer derived several existence and nonexistence results

for (1.4). Notice that Fučík’s manuscript was received by the editors of Čas. Pěst.

Mat. on August 30, 1974, while Dancer’s manuscript was received by the editors of

Bull. Austr. Math. Soc. on July 1, 1976. Fučík and Dancer never met before and

their results provide an evidence that the Fučík spectrum arose naturally at a certain

stage of development of nonlinear analysis.

Svatopluk Fučík was the advisor of my master thesis which I submitted in May

1977. My task was to prove the existence and nonexistence results for the Dirichlet

problem

(1.6)

{

−(|u′(x)|p−2u′(x))′ = f(x, u(x)), x ∈ (0, 1),

u(0) = u(1) = 0

where p > 2 and

f(·, s) ∼ µ|s|p−2s as s → ∞ and f(·, s) ∼ ν|s|p−2s as s → −∞.

The results of my thesis relied on the characterization of all couples (µ, ν) ∈ R
2 for

which the problem

(1.7)

{

−(|u′(x)|p−2u′(x))′ − µ|u+(x)|p−2u+(x) + ν|u−(x)|p−2u−(x) = 0,

u(0) = u(1) = 0

has a nontrivial solution in (0, 1). Actually I proved that the Fučík spectrum for (1.7)

has a structure similar to that for (1.5) and the existence and nonexistence results

for (1.6) along the lines of [6] and [26] hold true. However, different technique had

to be employed in the quasilinear case p > 2. The main results were published in

Drábek [13] and then generalized and complemented in Boccardo, Drábek, Giachetti

and Kučera [5].

Let us note that the quasilinear operator

u 7→ (|u′|p−2u′)′

has its counterpart in higher dimensions

u 7→ div(|∇u|p−2∇u).

It is defined for any p > 1 and called the p-Laplacian. Thus the main goal of

my master thesis, expressed in this terminology, was the investigation of the Fučík

spectrum for the p-Laplacian.
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2. Common features and pioneering results

Both notions introduced in the previous section, the Fučík spectrum and the

p-Laplacian, became meanwhile quite frequent in nonlinear analysis. They share

the following common feature. In the language of the second order ODEs the Fučík

spectrum as well as the p-Laplacian are well understood and there exist many accu-

rate results involving both the notions. On the other hand, even very basic questions

concerning the structure of the Fučík spectrum and the properties of the p-Laplacian

are still open in the PDE case. In order to acquaint the reader with some of them,

we consider the problem

(2.1)

{

−∆u(x)− µu+(x) + νu−(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

where Ω ⊂ R
N . The structure of the Fučík spectrum of (2.1) is not known even if

Ω is a square or a disc in R
2! There are many partial results showing that certain

curves in the (µ, ν)-plane must be contained in the Fučík spectrum but there is no

result which would reveal its complete description.

Let us consider the eigenvalue problem for the p-Laplacian∆pu := div(|∇u|p−2∇u)

for p > 1:

(2.2)

{

−∆pu(x)− λ|u(x)|p−2u(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

An eigenvalue of (2.2) is such an λ ∈ R for which there exists a nontrivial solution

(called an eigenfunction) of (2.2). The set of all eigenvalues of (2.2) is not known for

Ω ⊂ R
N being a bounded smooth domain, N > 2. And this is the case even if Ω is

such special domain as a square or a disc in R
2!

The set of all eigenvalues is well understood in one dimension (Ω = bounded

interval) when it forms a sequence

0 < λ1 < λ2 < λ3 < . . . → ∞.

In higher dimension there are several variational tools, like the Ljusternik-Schnirel-

mann method, which allow to construct a special sequence of eigenvalues of (2.2),

{λn}
∞
n=1, λn → ∞ with a “minmax” characterization (see e.g. [27]). However, it is

not clear if such a sequence exhausts the set of all eigenvalues of (2.2). For example,

it is not clear whether or not the set of all eigenvalues of (2.2) contains an interval

for some “special” domains Ω.
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Let us mention some pioneering works on both the notions. As for the Fučík

spectrum we mention the result of Krejčí [29]. He was also a student of Svatopluk

Fučík and his paper [29] contains the results from his master thesis. Complete

description of the Fučík spectrum for the fourth order ODE is given and the existence

results along the lines of [6] and [26] are presented there. An interesting paper by

Švarc [33], another student of Fučík, is devoted to the study of the Fučík spectrum

for finite-dimensional operators. The author demonstrates (on examples in R
4) that

there is no relation between the value of the Leray-Schauder degree in different

parts of the complement of the Fučík spectrum and the number of solutions of the

associated equation.

As for the p-Laplacian, we mention here the paper by Elbert [24], as one of the

very first publications about the eigenvalue problem (2.2) in one-dimension. Elbert

himself (and some other mathematicians working in oscillatory theory, too) called

one-dimensional p-Laplacian a half-linear operator. The reason is that only homo-

geneity is preserved while additivity is lost for p 6= 2. It should be emphasized that

Elbert’s paper [24] had not been recognized for relatively long period of time. In

particular, in 1980s several papers of other authors “rediscovered” what had been

already published in [24]. In particular, the generalization of goniometric functions,

nowadays called sinp and cosp, were studied in detail already by Elbert.

3. Contributions of the author: Fučík spectrum

In this section we present some modest contributions of the author (and his co-

authors) to the study of the Fučík spectrum. In 1980s many mathematicians gen-

eralized the famous result of Landesman and Lazer [30] in different directions. In

order to get existence results for a rather general growth restriction on the nonlinear

term, the knowledge of the Fučík spectrum appeared to be very useful. This was

observed in author’s paper [12], where the boundary value problem

(3.1)

{

u′′(x) + u(x) + g(x, u(x)) = h(x), x ∈ (0, π),

u(0) = u(π) = 0

was studied. Let

g−∞(x) := lim sup
s→−∞

g(x, s) and g∞(x) := lim inf
s→∞

g(x, s).

We assume that g−∞(x) and g∞(x) are bounded from above and from below, re-

spectively. The existence result for (3.1) holds if
∫

π

0

g−∞(x) sinxdx <

∫

π

0

h(x) sinxdx <

∫

π

0

g∞(x) sin xdx.
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Here lim sup
s→∞

g(x, s)/s might be arbitrarily large but this fact must be compensated

by a suitable restriction given by the Fučík spectrum on lim sup
s→−∞

g(x, s)/s.

Some other results along these lines were published in author’s monograph [10]

which was aimed to be a “continuation” of Fučík’s book [25].

The models of suspension bridges are another interesting motivation for the study

of the Fučík spectrum. Let us mention here the seminal paper by Lazer and McKenna

[31] which was (and still is) a source of many inspirations and open problems. The

simplest model of a suspension bridge is given by the beam equation

(3.2)

{

mutt + kuxxxx + δut + bu+ = W (x) + f(x, t), (x, t) ∈ (0, L)× R,

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

see Figure 2.

H2O

Figure 2. The model of suspension bridge.

The nonlinear term in the beam equation, bu+, represents the influence of the

cable stays which act as one-side springs. In our paper with Berkovits, Leinfelder,

Mustonen and Tajčová (Holubová) [3] we proved the existence and uniqueness of

periodic solutions of problem (3.2). Bifurcation of periodic solutions for a slightly

different model were proved in our paper with Tajčová (Holubová) [23]. Discussion

of the results for different and more complicated models (described by systems of

PDEs) is contained in our joint paper with Holubová, Matas and Nečesal [16].

More recent results on the Fučík spectrum are contained in the joint papers of the

author and Robinson [20], [21]. In [21] we study the problem

(3.3)

{

−(|u′(x)|p−2u′(x))′ − α(u+(x))p−1 + β(u−(x))p−1 = f(x), x ∈ (0, T ),

u(0) = u(T ) = 0

for p > 1, T > 0, f ∈ L1(0, T ). Using the variational approach we prove existence

results for (3.3) under the assumption that (α, β) belongs to the Fučík spectrum of the

associated homogeneous problem. We also provide a new variational characterization

for the points which belong to the third Fučík curve.
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Paper [20] deals with the boundary value problem

(3.4)

{

−∆u(x) = αu+(x)− βu−(x) + g(u(x)) + h(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

where Ω ⊂ R
N is a smooth bounded domain, g : R → R is a bounded continuous

function and h ∈ L2(Ω). Even if the structure of the entire Fučík spectrum of

the associated homogeneous equation is not known, we prove existence results for

(3.4) depending on the position of (α, β) with respect to the Fučík spectrum. In

the nonresonance case, where (α, β) is not an element of the Fučík spectrum, the

existence result for (3.4) follows without further restriction on g and h. In the

resonance case, where (α, β) is an element of the Fučík spectrum, we present a new

and more general Landesman-Lazer-type condition (see [30] for the original results of

Landesman and Lazer) to prove existence results for (3.4). The proofs are variational

and rely strongly on the variational characterization of certain parts of the Fučík

spectrum.

4. Contributions of the author: p-Laplacian

Let {λn}
∞
n=1 be the sequence of eigenvalues of (2.2) obtained by the Ljusternik-

Schnirelmann method. It is known, see e.g. Anane [1], that λ1 is a simple eigenvalue

(i.e., all eigenfunctions associated with λ1 are mutually proportional), the corre-

sponding eigenfunctions do not change sign in Ω, and there are no eigenvalues λ

of (2.2) with λ ∈ (−∞, λ1) ∪ (λ1, λ2). It is also known that every eigenfunction

associated with λ2 has exactly two modal domains, see e.g. Anane and Tsouli [2].

As was already mentioned before, the structure of the set of all eigenvalues beyond

λ2 in the case N > 2 is not clear at all. However, the isolatedness and simplicity of

λ1 leads naturally to the question of bifurcation from λ1.

Let us consider the problem

(4.1)

{

−∆pu(x) = λ|u(x)|p−2u(x) + g(x, u(x), λ), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

Ω ⊂ R
N a smooth bounded domain, λ ∈ R a bifurcation parameter, g(x, 0, λ) = 0,

(x, λ) ∈ Ω× R,

lim
s→0

g(x, s, λ)

|s|p−2
= 0,

g being of subcritical growth. The existence of global bifurcation branches of solu-

tions (λ, u), (λ, v) ∈ R × W 1,p
0 (Ω) of (4.1), u > 0 and v < 0 in Ω, bifurcating from
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(λ1, 0), was proved independently in Drábek [11] (received by the editors in May 2,

1988) and del Pino, Manásevich [8] (received by the editors on November 2, 1989).

Since the contacts between Czech and Chilean mathematicians in 1980s were incon-

ceivable, this is another evidence of the fact that, at a certain stage, the research

follows the same track independently in different parts of the globe. After the change

of the political climate both in Czech Republic and Chile we have all become close

collaborators, see our joint paper [7] below.

Another natural question connected with the properties of the principal eigen-

value of the p-Laplacian, λ1, is the possibility of a generalization of the Fredholm

alternative. It is simply formulated as follows: “Find sufficient (and possibly also

necessary) conditions on f such that the problem

(4.2)

{

−∆pu(x)− λ1|u(x)|
p−2u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

has at least one solution.” In the case p = 2 there is a necessary and sufficient

condition

(4.3)

∫

Ω

f(x)ϕ1(x) dx = 0

where ϕ1 = ϕ1(x) > 0 is the normalized eigenfunction associated with λ1. However,

in the case p 6= 2, the analogue of (4.3) was not apparent at all. In the joint paper of

the author, Binding and Huang [4] we gave an example which shows that for p 6= 2

there exist right-hand sides f such that

∫

Ω

f(x)ϕ1(x) dx 6= 0

and problem (4.2) still has a solution. In other words, (4.3) is not a necessary

condition. However, this was not surprising at all. On the other hand, it was very

surprising that (4.3) is still sufficient even if p 6= 2! This fact was discovered in the pa-

per del Pino, Drábek and Manásevich [7] in the case N = 1 (Ω = bounded interval).

In fact, much more was proved in [7]. It became quite clear what is the charac-

terization of all right-hand sides f for which (4.2) has a solution. Namely, split

f as follows: f = tϕ1 + f⊥, where t ∈ R and
∫

Ω f⊥(x)ϕ1(x) dx = 0. Given f⊥

fixed, there exist t1(f⊥) < 0 < t2(f
⊥) such that (4.2) has at least one solution if

f = f⊥, f = tiϕ1 + f⊥, i = 1, 2, and it has at least two distinct solutions provided

f = tϕ1 + f⊥ with t ∈ (t1, 0) ∪ (0, t2).

To recover this result for the PDE case was not obvious at all. We mention here

the paper Drábek, Girg, Takáč and Ulm [14] where the bifurcation from infinity
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argument was used to prove the results along the lines of the one-dimensional case.

Moreover, some other multiplicity results (existence of at least three solutions) were

proved for the parameter λ close to λ1 but not equal to λ1.

It is worth mentioning also the variational approach to (4.2). The energy func-

tional associated with this problem has the form

Ep(u) =
1

p

∫

Ω

|∇u|p dx−
λ1

p

∫

Ω

|u|p dx−

∫

Ω

fu dx.

Its critical points correspond to solutions of (4.2). Let
∫

Ω fϕ1 dx = 0. In the case

p = 2 this functional is bounded below and its critical points, which are its global

minimizers at the same time, form an affine set of one dimension “parallel” to {tϕ1 :

t ∈ R}. The graph of E2 can be thus visualized as an infinite trough and its bottom

as solutions of (4.2). The geometry of Ep is different for p ∈ (1, 2) and p ∈ (2,∞).

Indeed, in Drábek [9] we show that for p ∈ (1, 2) the functional Ep is unbounded

from below and from above and has geometry of the saddle point. On the other

hand, for p ∈ (2,∞), Ep is bounded below and has “global minimizer” geometry. In

both the cases the set of all critical points is a priori bounded (in contrast with the

case p = 2) but the Palais-Smale condition is not available. The proof of existence

of critical points thus requires more involved arguments, different from the standard

ones, see [9].

In our joint paper with Robinson [15] we introduced a new variational charac-

terization of the sequence of eigenvalues of (2.2). For this purpose consider the

functional

I(u) :=

∫

Ω |∇u|p dx
∫

Ω
|u|p dx

defined on W 1,p
0 (Ω) \ {0} and the manifold

S :=
{

u ∈ W 1,p
0 (Ω): ‖u‖Lp(Ω) = 1

}

.

For any k ∈ N let Fk := {A ⊂ S : ∃ continuous odd surjection h : S k−1 → A},

where S k−1 represents the unit sphere in R
k. Then

(4.4) λk := inf
A∈Fk

sup
u∈A

I(u)

is a critical value of I|S and an eigenvalue of (2.2) at the same time. It is important

to note that the given characterization of λk is not the same as the usual Ljusternik-

Schnirelmann characterization involving a minimax over sets of genus greater than k.

Let {µk}
∞
k=1 be the eigenvalues defined by the Ljusternik-Schnirelmann charakteri-

zation. Since Fk contains only the sets of genus k, it follows that λk > µk. Thus
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µk → ∞ implies λk → ∞. It is clear that λ1 = µ1 and it can be shown that λ2 = µ2

(see [15]). However, the question whether λk = µk, k > 3, remains open.

Even if it is not clear whether or not {λk}
∞
k=1 exhausts the set of all eigenvalues

of (2.2), the variational characterization (4.4) appears to be very useful to recover

the Landesman-Lazer-type results to the p-Laplacian. Indeed, let us consider

(4.5)

{

−∆pu(x)− λ|u(x)|p−2u(x) + f(x, u(x)) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

where f is a bounded function and the limits

f±(x) := lim
t→±∞

f(x, t)

exist. Let λ be an eigenvalue of (2.2) (not necessarily given by (4.4)). Then the

problem (4.5) has a solution provided

∫

v>0

f+(x)v(x) dx+

∫

v<0

f−(x)v(x) dx > 0 (or < 0)

for any eigenfunction v = v(x) associated with λ.

Another useful application of (4.4) concerns the generalization of the Courant

nodal domain theorem for the eigenfunctions of (4.5), see Drábek and Robinson [22].

Let uλ be an eigenfunction associated with an eigenvalue λ of (2.2) and let {λn}
∞
n=1

be the sequence of eigenvalues given by (4.4). We proved in [22]:

(1) For λ < λn+1 the eigenfunction uλ has at most n nodal domains (maximal

connected sets in Ω where uλ is of definite sign).

(2) For λ = λn the eigenfunction uλn
has at most 2n− 2 nodal domains.

Note that if λn < λn+1 then in view of (1) uλn
has at most n nodal domains.

We say that the unique continuation property (UCP for short) is satisfied for (2.2)

if no eigenfunction of (2.2) can vanish in a set with nonempty interior in Ω. UCP

holds if p = 2 but it is an open problem if p 6= 2. Under the assumption that

UCP holds for (2.2) also with p 6= 2, we recovered in [22] the Courant nodal domain

theorem as follows:

(3) For λ 6 λn the eigenfunction uλ has at most n nodal domains.

Systematic study of the degenerated and/or singular boundary value problems

involving the p-Laplacian with weights

{

− div(a(x, u)|∇u|p−2∇u) = f(x, u,∇u) in Ω,

u = 0 on ∂Ω
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is contained in the monograph Drábek, Kufner and Nicolosi [18]. In particular, we

focus on the connection between the singularities and degenerations of the weight a

on the one hand and the rate of growth of the nonlinearity f on the other.

Some recent results in the ODE case concern the Sturm-Liouville property for the

quasilinear problem

{

(̺(t)|u′(t)|p−2u′(t))′ + λσ(t)|u(t)|p−2u(t) = 0 on (a, b),

lim
t→a+

̺(t)|u′(t)|p−2u′(t) = lim
t→b

−

u(t) = 0,

−∞ 6 a < b 6 ∞. The reader is referred to papers Drábek and Kufner [17] and

Drábek and Kuliev [19] for the details.

The flow of papers about the p-Laplacian retains its intensity. Many other gener-

alizations are considered in the literature. Let us mention, e.g., the p-Laplacian with

variable p = p(x), x ∈ Ω,

(4.6) ∆p(x)u := div(|∇u(x)|p(x)−2∇u(x)).

The systematic study of suitable function spaces Lp(x)(Ω) and W k,p(x)(Ω) was in-

vented as an “artificial” problem by Alois Kufner and was treated systematically

in the paper by Kováčik and Rákosník [28]. Several years later very interesting

connections to rheological models involving the operator (4.6) were discovered (see

e.g. Růžička [32]). This led to the vast literature on this topic and brought a lot of

citations for [28]. This is to say that any generalization makes sense if a good math-

ematics is behind it. And very often also useful applications may appear later on.
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