Previous |  Up |  Next

Article

Keywords:
Navier-Stokes equation; suitable weak solution; regularity
Summary:
We deal with a suitable weak solution $(\bold v,p)$ to the Navier-Stokes equations in a domain $\Omega \subset \mathbb R^3$. We refine the criterion for the local regularity of this solution at the point $(\bold fx_0,t_0)$, which uses the $L^3$-norm of $\bold v$ and the $L^{3/2}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(\bold x_0,t_0)$. The refinement consists in the fact that only the values of $\bold v$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(\bold x_0,t_0)$, respectively in a ”small” subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(\bold x_0,t_0)$ if $\bold v$ and $p$ are “smooth” outside the paraboloid.
References:
[1] Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35 (1982), 771-831. DOI 10.1002/cpa.3160350604 | MR 0673830 | Zbl 0509.35067
[2] Farwig, R., Kozono, H., Sohr, H.: Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition. Parabolic and Navier-Stokes Equations. Part 1. Proceedings of the confererence, Będlewo, Poland, 2006 Banach Center Publ. 81 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2008), 175-184 J. Rencławowicz et al. MR 2549330 | Zbl 1154.35416
[3] Farwig, R., Kozono, H., Sohr, H.: An $L^q$-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195 (2005), 21-53. DOI 10.1007/BF02588049 | MR 2233684 | Zbl 1111.35033
[4] Kučera, P., Skalák, Z.: A note on the generalized energy inequality in the Navier-Stokes equations. Appl. Math., Praha 48 (2003), 537-545. DOI 10.1023/B:APOM.0000024492.23444.29 | MR 2025962 | Zbl 1099.35099
[5] Ladyzhenskaya, O. A., Seregin, G. A.: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1 (1999), 356-387. DOI 10.1007/s000210050015 | MR 1738171 | Zbl 0954.35129
[6] Lin, F.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51 (1998), 241-257. DOI 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A | MR 1488514 | Zbl 0958.35102
[7] Nečas, J., Neustupa, J.: New conditions for local regularity of a suitable weak solution to the Navier-Stokes equation. J. Math. Fluid Mech. 4 (2002), 237-256. DOI 10.1007/s00021-002-8544-9 | MR 1932862 | Zbl 1010.35081
[8] Neustupa, J.: A note on local interior regularity of a suitable weak solution to the Navier-Stokes problem. Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 1391-1400. DOI 10.3934/dcdss.2013.6.1391 | MR 3039705 | Zbl 1260.35125
[9] Neustupa, J.: A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier-Stokes equations. Arch. Ration. Mech. Anal. 214 (2014), 525-544. DOI 10.1007/s00205-014-0761-x | MR 3255699 | Zbl 1304.35502
[10] Neustupa, J.: A removable singularity in a suitable weak solution to the Navier-Stokes equations. Nonlinearity 25 (2012), 1695-1708. DOI 10.1088/0951-7715/25/6/1695 | MR 2924731 | Zbl 1245.35085
[11] Scheffer, V.: Hausdorff measure and the Navier-Stokes equations. Commun. Math. Phys. 55 (1977), 97-112. DOI 10.1007/BF01626512 | MR 0510154 | Zbl 0357.35071
[12] Seregin, G., Šverák, V.: On smoothness of suitable weak solutions to the Navier-Stokes equations. J. Math. Sci., New York 130 (2005), 4884-4892 translated from Zap. Nauchn. Semin. POMI 306 (2003), 186-198. DOI 10.1007/s10958-005-0383-9 | MR 2065503
[13] Seregin, G. A.: Local regularity for suitable weak solutions of the Navier-Stokes equations. Russ. Math. Surv. 62 (2007), 595-614 translated from Usp. Mat. Nauk 62 149-168 (2007). DOI 10.1070/RM2007v062n03ABEH004415 | MR 2355422 | Zbl 1139.76018
[14] Sohr, H., Wahl, W. von: On the regularity of the pressure of weak solutions of Navier-Stokes equations. Arch. Math. 46 (1986), 428-439. DOI 10.1007/BF01210782 | MR 0847086
[15] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. MR 0463908 | Zbl 0353.46018
[16] Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations. Advances in Mathematical Fluid Mechanics. Selected papers of the international conference on mathematical fluid mechanics, Estoril, Portugal, 2007 Springer Berlin 613-630 (2010), R. Rannacher et al. MR 2665054
Partner of
EuDML logo