[2] Farwig, R., Kozono, H., Sohr, H.:
Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition. Parabolic and Navier-Stokes Equations. Part 1. Proceedings of the confererence, Będlewo, Poland, 2006 Banach Center Publ. 81 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2008), 175-184 J. Rencławowicz et al.
MR 2549330 |
Zbl 1154.35416
[12] Seregin, G., Šverák, V.:
On smoothness of suitable weak solutions to the Navier-Stokes equations. J. Math. Sci., New York 130 (2005), 4884-4892 translated from Zap. Nauchn. Semin. POMI 306 (2003), 186-198.
DOI 10.1007/s10958-005-0383-9 |
MR 2065503
[14] Sohr, H., Wahl, W. von:
On the regularity of the pressure of weak solutions of Navier-Stokes equations. Arch. Math. 46 (1986), 428-439.
DOI 10.1007/BF01210782 |
MR 0847086
[15] Talenti, G.:
Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.
MR 0463908 |
Zbl 0353.46018
[16] Wolf, J.:
A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations. Advances in Mathematical Fluid Mechanics. Selected papers of the international conference on mathematical fluid mechanics, Estoril, Portugal, 2007 Springer Berlin 613-630 (2010), R. Rannacher et al.
MR 2665054