[1] Allen, S., Cahn, J.:
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 1084-1095 (1979).
DOI 10.1016/0001-6160(79)90196-2
[3] Beneš, M., Kimura, M., Pauš, P., Ševčovič, D., Tsujikawa, T., Yazaki, S.:
Application of a curvature adjusted method in image segmentation. Bull. Inst. Math., Acad. Sin. (N.S.) 3 (2008), 509-523.
MR 2502611 |
Zbl 1170.53040
[4] Beneš, M., Kratochvíl, J., Křišťan, J., Minárik, V., Pauš, P.:
A parametric simulation method for discrete dislocation dynamics. European Phys. J. ST 177 177-192 (2009).
DOI 10.1140/epjst/e2009-01174-7
[5] Beneš, M., Yazaki, S., Kimura, M.:
Computational studies of non-local anisotropic Allen-Cahn equation. Math. Bohem. 136 (2011), 429-437.
MR 2985552 |
Zbl 1249.35153
[6] Cahn, J. W., Hilliard, J. E.:
Free energy of a nonuniform system. III. Nucleation of a two-component incompressible fluid. J. Chem. Phys. 31 688-699 (1959).
DOI 10.1063/1.1730447
[7] Dolcetta, I. Capuzzo, Vita, S. Finzi, March, R.:
Area-preserving curve-shortening flows: From phase separation to image processing. Interfaces Free Bound. 4 (2002), 325-343.
MR 1935642
[9] Esedo\={g}lu, S., Ruuth, S. J., Tsai, R.:
Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10 (2008), 263-282.
MR 2453132 |
Zbl 1157.65330
[10] Gage, M.:
On an area-preserving evolution equation for plane curves. Nonlinear Problems in Geometry, Proc. AMS Spec. Sess., Mobile/Ala. 1985 Contemp. Math. 51 American Mathematical Society, Providence (1986), 51-62 D. M. DeTurck.
DOI 10.1090/conm/051/848933 |
MR 0848933 |
Zbl 0608.53002
[12] Henry, M., Hilhorst, D., Mimura, M.:
A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete Contin. Dyn. Syst., Ser. S 4 (2011), 125-154.
MR 2746398 |
Zbl 1207.35189
[14] Minárik, V., Beneš, M., Kratochvíl, J.:
Simulation of dynamical interaction between dislocations and dipolar loops. J. Appl. Phys. 107 Article No. 061802, 13 pages (2010).
DOI 10.1063/1.3340518
[17] Ševčovič, D.:
Qualitative and quantitative aspects of curvature driven flows of planar curves. Topics on Partial Differential Equations Jindřich Nečas Center for Mathematical Modeling Lecture Notes 2 Matfyzpress, Praha 55-119 (2007), P. Kaplický et al.
MR 2856665