[1] Abdeljawad, T.:
On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013 (2013), Article No. 406910, 12 pages.
MR 3081123
[3] Abdeljawad, T., Jarad, F., Baleanu, D.:
A semigroup-like property for discrete Mittag-Leffler functions. Adv. Difference Equ. (electronic only) 2012 (2012), Article No. 72, 7 pages.
MR 2944466 |
Zbl 1292.39001
[5] Atıcı, F. M., Eloe, P. W.:
Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., Special Issue I (electronic only) 2009 (2009), Article No. 3, 12 pages.
MR 2558828 |
Zbl 1189.39004
[8] Bohner, M., Peterson, A.:
Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Basel (2001).
MR 1843232 |
Zbl 0978.39001
[10] Čermák, J., Kisela, T., Nechvátal, L.:
Discrete Mittag-Leffler functions in linear fractional difference equations. Abstr. Appl. Anal. 2011 (2011), Article No. 565067, 21 pages.
MR 2817254 |
Zbl 1220.39010
[12] Díaz, R., Pariguan, E.:
On hypergeometric functions and Pochhammer $k$-symbol. Divulg. Mat. 15 (2007), 179-192.
MR 2422409 |
Zbl 1163.33300
[13] Elaydi, S.:
An Introduction to Difference Equations (3rd edition). Undergraduate Texts in Mathematics Springer, New York (2005).
MR 2128146
[15] Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems and Application Multiconference 2 IMACS, IEEE-SMC, Lille, France, 1996 963-968.
[16] Miller, K. S., Ross, B.:
Fractional difference calculus. Univalent Functions, Fractional Calculus, and Their Applications, Kōriyama, 1988 Ellis Horwood Ser. Math. Appl. Horwood, Chichester (1989), 139-152 H. M. Srivastava et al.
MR 1199147 |
Zbl 0693.39002
[17] Nagai, A.:
Discrete Mittag-Leffler function and its applications. Sūrikaisekikenkyūsho Kōkyūroku 1302 (2003), 1-20 New developments in the research of integrable systems that are continuous, discrete and ultradiscrete, Japanese, Kyoto, 2002.
MR 1986510
[18] Podlubny, I.:
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198 Academic Press, San Diego (1999).
MR 1658022 |
Zbl 0924.34008