[4] El-Mikkawy, M., El-Dousky, R. A.:
New optimized non-FSAL Embedded Runge–Kutta Nystrom algorithms of orders 6 and 4 in six stages. Applied Mathematics and computer 145 (2003), 33–43.
DOI 10.1016/S0096-3003(02)00436-8 |
MR 2005974
[5] Fehlberg, E.: Classical eight and lower-order Runge–Kutta–Nystrom formulae with step size control for the special second-order differential equations. Technical Report, R-381, NASA, 1972.
[6] Fillipi, S., Graf, J.:
New Runge–Kutta–Nystrom Formulae pairs of order $8(7)$, $9(8)$, $10(9)$ and $11(10)$ for differential equation of the form $y^{\prime \prime } =f(x,y)$. J. computing Appl. Math. 14 (1986), 362–370.
MR 0831080
[8] Hairer, E., Norsett, S. P., Wanner, G.:
Solving Ordinary Differential Equations I, Non Stiff problems. springer-Verlag, Berlin, 1993.
MR 1227985
[9] Imoni, S. O., Otunta, F. O., Ramamohan, T. R.:
Embedded implicit Runge–Kutta–Nystrom method for solving second order differential equations. International Journal of Computer Mathematics 83, 11 (2006), 777–784.
DOI 10.1080/00207160601084505 |
MR 2284139 |
Zbl 1111.65066
[10] Imoni, S. O., Otunta, F. O., Ikhile, M. N. O.: Embedded diagonally implicit Runge–Kutta–Nystrom method of order two and three for special second order differential equations. The Journal of the Mathematical Association of Nigeria (ABACUS) 34, 213 (2007), 363–373.
[11] Kanagarajam, K., Sambath, M.:
Runge–Kutta–Nystrom method of order three for solving Fuzzy Differential Equations. Computational methods in Applied Mathematics 10, 2 (2010), 195–203.
MR 2770290
[13] Qinghong, Li, Yongzhong, S.:
Explicit one-step p-stable methods for second order periodic initial value problems. Numerical Mathematics, Journal of Chinese Universities (English series) 15, 3 (2006), 237–247.
MR 2296247 |
Zbl 1132.65066
[18] Simos, T. E., Dimas, E., Sideridis, A. B.:
A Runge–Kutta–Nystrom method for the numerical integration of special second-order periodic initial-value problems. J. Computational and Applied Maths. 51 (1994), 317–326.
DOI 10.1016/0377-0427(92)00114-O |
MR 1300319 |
Zbl 0872.65066
[19] Van der Houwen, P. J., Sommeijer, B. P.:
Diagonally Implicit Runge–Kutta–Nystrom methods for oscillatory problems. SIAM J. Numerical Analysis 26, 2 (1989), 414–429.
DOI 10.1137/0726023 |
MR 0987398 |
Zbl 0676.65072