[3] Bou, F., Paoli, F., Ledda, A., Freytes, H.:
On some properties of quasi-MV algebras and $\sqrt{^{\prime }}$quasi-MV algebras, II. Soft Computing 12, 4 (2008), 341–352.
DOI 10.1007/s00500-007-0185-8 |
Zbl 1127.06007
[4] Burris, S., Sankappanavar, H. P.:
A Course in Universal Algebra. Springer-Verlag, Berlin, 1981.
MR 0648287 |
Zbl 0478.08001
[6] Chajda, I.:
Jónsson’s lemma for normally presented varieties. Mathematica Bohemica 122, 4 (1997), 381–382.
MR 1489399 |
Zbl 0897.08009
[7] Chajda, I., Czédli, G., Horváth, E. K.:
Trapezoid Lemma and congruence distributivity. Mathematica Slovaca 53, 3 (2003), 247–253.
MR 2025021 |
Zbl 1058.08007
[9] Chajda, I., Horváth, E. K.:
A triangular scheme for congruence distributivity. Acta Sci. Math. (Szeged) 68 (2002), 29–35.
MR 1916565 |
Zbl 0997.08001
[10] Chajda, I., Rosenberg, I.:
Remarks on Jónsson’s lemma. Houston Journal of Mathematics 22, 2 (1996), 249–262.
MR 1402747 |
Zbl 0871.08004
[11] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999.
MR 1786097
[12] Cornish, W. H.:
Constructions for BCK-algebras. Math. Sem. Notes Kobe Univ. 11 (1983), 1–7.
MR 0742903 |
Zbl 0553.03043
[16] Freese, R., McKenzie, R.:
Commutator Theory for Congruence Modular Varieties. London Mathematical Society Lecture Notes, 125, Cambridge University Press, Cambridge, 1987.
MR 0909290 |
Zbl 0636.08001
[18] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse on Substructural Logics. Elsevier, Amsterdam, 2007.
[19] Grätzer, G.:
Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman and Co., San Francisco, 1971.
MR 0321817
[20] Gumm, H. P.:
Geometrical Methods in Congruence Modular Algebras. Memoirs Amer. Math. Soc., Amer. Math. Soc., 1983.
MR 0714648 |
Zbl 0547.08006
[22] Kowalski, T., Paoli, F.:
On some properties of quasi-MV algebras and square root quasi-MV algebras, III. Reports on Mathematical Logic 45 (2010), 161–199.
MR 2790758
[28] Paoli, F., Ledda, A., Kowalski, T., Spinks, M.:
Quasi-discriminator varieties. International Journal of Algebra and Computation 24, 3 (2014), 375–411.
DOI 10.1142/S0218196714500179 |
MR 3211909
[29] Petrich, I.: Lectures on semigroups. Wiley and Sons, New York, 1977.
[32] Spinks, M.: On the Theory of Pre-BCK Algebras. Ph.D. Thesis, Monash University, 2003.