Previous |  Up |  Next

Article

Keywords:
Congruence distributive variety; congruence modular variety; congruence permutable variety; idempotent endomorphism
Summary:
In universal algebra, we oftentimes encounter varieties that are not especially well-behaved from any point of view, but are such that all their members have a “well-behaved core”, i.e. subalgebras or quotients with satisfactory properties. Of special interest is the case in which this “core” is a retract determined by an idempotent endomorphism that is uniformly term definable (through a unary term $t(x)$) in every member of the given variety. Here, we try to give a unified account of this phenomenon. In particular, we investigate what happens when various congruence properties—like congruence distributivity, congruence permutability or congruence modularity—are not supposed to hold unrestrictedly in any $\mathbf {A}\in \mathcal {V}$, but only for congruence classes of values of the term operation $t^{\mathbf {A}}$.
References:
[1] Bignall, R. J., Leech, J.: Skew Boolean algebras and discriminator varieties. Algebra Universalis 33 (1995), 387–398. DOI 10.1007/BF01190707 | MR 1322781 | Zbl 0821.06013
[2] Blok, W. J., Raftery, J. G.: Assertionally equivalent quasivarieties. International Journal of Algebra and Computation 18, 4 (2008), 589–681. DOI 10.1142/S0218196708004627 | MR 2428150 | Zbl 1148.08002
[3] Bou, F., Paoli, F., Ledda, A., Freytes, H.: On some properties of quasi-MV algebras and $\sqrt{^{\prime }}$quasi-MV algebras, II. Soft Computing 12, 4 (2008), 341–352. DOI 10.1007/s00500-007-0185-8 | Zbl 1127.06007
[4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, Berlin, 1981. MR 0648287 | Zbl 0478.08001
[5] Chajda, I.: Normally presented varieties. Algebra Universalis 34 (1995), 327–335. DOI 10.1007/BF01182089 | MR 1350845 | Zbl 0842.08007
[6] Chajda, I.: Jónsson’s lemma for normally presented varieties. Mathematica Bohemica 122, 4 (1997), 381–382. MR 1489399 | Zbl 0897.08009
[7] Chajda, I., Czédli, G., Horváth, E. K.: Trapezoid Lemma and congruence distributivity. Mathematica Slovaca 53, 3 (2003), 247–253. MR 2025021 | Zbl 1058.08007
[8] Chajda, I., Czédli, G., Horváth, E. K.: Shifting Lemma and shifting lattice identities. Algebra Universalis 50 (2003), 51–60. DOI 10.1007/s00012-003-1808-2 | MR 2026826 | Zbl 1091.08006
[9] Chajda, I., Horváth, E. K.: A triangular scheme for congruence distributivity. Acta Sci. Math. (Szeged) 68 (2002), 29–35. MR 1916565 | Zbl 0997.08001
[10] Chajda, I., Rosenberg, I.: Remarks on Jónsson’s lemma. Houston Journal of Mathematics 22, 2 (1996), 249–262. MR 1402747 | Zbl 0871.08004
[11] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999. MR 1786097
[12] Cornish, W. H.: Constructions for BCK-algebras. Math. Sem. Notes Kobe Univ. 11 (1983), 1–7. MR 0742903 | Zbl 0553.03043
[13] Di Nola, A., Dvurečenskij, A.: State-morphism MV algebras. Annals of Pure and Applied Logic 161, 2 (2009), 161–173. DOI 10.1016/j.apal.2009.05.003 | MR 2552736 | Zbl 1212.06028
[14] Esteva, F., Godo, L.: Monoidal t-norm based logic: Towards a logic of left-continuous t-norms. Fuzzy Sets and Systems 124 (2001), 271–288. DOI 10.1016/S0165-0114(01)00098-7 | MR 1860848
[15] Fleischer, I.: A note on subdirect products. Acta Math. Acad. Sci. Hungar. 6 (1955), 463–465. DOI 10.1007/BF02024400 | MR 0075913 | Zbl 0070.26301
[16] Freese, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties. London Mathematical Society Lecture Notes, 125, Cambridge University Press, Cambridge, 1987. MR 0909290 | Zbl 0636.08001
[17] Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505–514. DOI 10.1215/S0012-7094-62-02951-4 | MR 0140449 | Zbl 0114.01602
[18] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse on Substructural Logics. Elsevier, Amsterdam, 2007.
[19] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman and Co., San Francisco, 1971. MR 0321817
[20] Gumm, H. P.: Geometrical Methods in Congruence Modular Algebras. Memoirs Amer. Math. Soc., Amer. Math. Soc., 1983. MR 0714648 | Zbl 0547.08006
[21] Jónsson, B., Tsinakis, C.: Products of classes of residuated structures. Studia Logica 77 (2004), 267–292. DOI 10.1023/B:STUD.0000037130.29400.97 | MR 2080242 | Zbl 1072.06003
[22] Kowalski, T., Paoli, F.: On some properties of quasi-MV algebras and square root quasi-MV algebras, III. Reports on Mathematical Logic 45 (2010), 161–199. MR 2790758
[23] Kowalski, T., Paoli, F.: Joins and subdirect products of varieties. Algebra Universalis 65, 4 (2011), 371–391. DOI 10.1007/s00012-011-0137-0 | MR 2817559 | Zbl 1233.08007
[24] Kowalski, T., Paoli, F., Spinks, M.: Quasi-subtractive varieties. Journal of Symbolic Logic 76, 4 (2011), 1261–1286. DOI 10.2178/jsl/1318338848 | MR 2895395 | Zbl 1254.03119
[25] Ledda, A., Konig, M., Paoli, F., Giuntini, R.: MV algebras and quantum computation. Studia Logica 82, 2 (2006), 245–270. DOI 10.1007/s11225-006-7202-2 | MR 2221525 | Zbl 1102.06010
[26] Leech, J.: Skew lattices in rings. Algebra Universalis 26 (1989), 48–72. DOI 10.1007/BF01243872 | MR 0981425 | Zbl 0669.06006
[27] Leech, J.: Recent developments in the theory of skew lattices. Semigroup Forum 52 (1996), 7–24. DOI 10.1007/BF02574077 | MR 1363525 | Zbl 0844.06003
[28] Paoli, F., Ledda, A., Kowalski, T., Spinks, M.: Quasi-discriminator varieties. International Journal of Algebra and Computation 24, 3 (2014), 375–411. DOI 10.1142/S0218196714500179 | MR 3211909
[29] Petrich, I.: Lectures on semigroups. Wiley and Sons, New York, 1977.
[30] Salibra, A., Ledda, A., Paoli, F., Kowalski, T.: Boolean-like algebras. Algebra Universalis 69, 2 (2013), 113–138. DOI 10.1007/s00012-013-0223-6 | MR 3037008 | Zbl 1284.06033
[31] Sankappanavar, H. P.: Congruence lattices of pseudocomplemented semilattices. Algebra Universalis 9 (1979), 304–316. DOI 10.1007/BF02488042 | MR 0544854 | Zbl 0424.06001
[32] Spinks, M.: On the Theory of Pre-BCK Algebras. Ph.D. Thesis, Monash University, 2003.
Partner of
EuDML logo