[1] Andreianov, B., Bendahmare, M., Karlsen, K. H.:
A Gradient Reconstruction Formula for Finite Volume Schemes and Discrete Duality. In: Finite Volume For Complex Applications, Problems And Perspectives. 5th International Conference, Wiley, London, 2008, 161–168.
MR 2451403
[2] Andreianov, B., Boyer, F., Hubert, F.:
Discrete duality finite volume schemes for Leray–Lions type elliptic problems on general 2D meshes. Numerical Methods PDE 23, 1 (2007), 145–195.
DOI 10.1002/num.20170 |
MR 2275464 |
Zbl 1111.65101
[3] Coudiére, Y., Hubert, F.:
A 3D discrete duality finite volume method for nonlinear elliptic equations. Algoritmy 2009 (2009), 51–60.
Zbl 1171.65441
[4] Evans, L. C., Spruck, J.:
Motion of the level sets by mean curvature I. J. Differential Geometry 3 (1991), 635–681.
MR 1100206
[5] Eymard, R., Gallouë, T., Herbin, R.:
Finite volume methods. Handbook of Numerical Analysis (Ph., Ciarlet, J. L., Lions, eds.), 3 (2000), 713–1018.
MR 1804748
[6] Handlovičová, A., Kotorová, D.: Stability of the semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D. Tatra Mountains Mathematical Publications, accepted.
[8] Kotorová, D.: Discrete duality finite volume scheme for the curvature-driven level set equation. Acta Polytechnica Hungarica 8, 3 (2011), 7–12.
[9] Kotorová, D.: Discrete duality finite volume scheme for the curvature driven level set equation in 3D. In: Advances in architectural, civil and environmental engineering [electronic source]: 22nd Annual PhD Student Conference, Nakl. STU, Bratislava, 2012, 33–39.
[10] Kotorová, D.: 3D numerical schemes for the level set equation based on discrete duality finite volumes. to appear.
[11] Sethian, J. A.:
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York, 1999.
MR 1700751