[3] Bharati, R., Parvatham, R., Swaminathan, A.:
On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math. 28 17-32 (1997).
MR 1457247 |
Zbl 0898.30010
[4] Cho, N. E., Kwon, O. S., Owa, S.:
Certain subclasses of Sakaguchi functions. Southeast Asian Bull. Math. 17 121-126 (1993).
MR 1259988 |
Zbl 0788.30007
[9] Goyal, S. P., Vijaywargiya, P., Darus, M.:
Fekete-Szegő problem for subclasses of uniformly starlike functions with respect to symmetric points. Far East J. Math. Sci. (FJMS) 60 169-192 (2012).
MR 2952858 |
Zbl 1251.30015
[12] Kanas, S., Lecko, A.:
On the Fekete-Szegő problem and the domain of convexity for a certain class of univalent functions. Zesz. Nauk. Politech. Rzeszowskiej, Mat. Fiz. 10, Mat. 9 73 49-57 (1990).
MR 1114742 |
Zbl 0741.30012
[14] Kanas, S., Sugawa, T.:
On conformal representations of the interior of an ellipse. Ann. Acad. Sci. Fenn., Math. 31 329-348 (2006).
MR 2248819 |
Zbl 1098.30011
[15] Kanas, S., Wiśniowska, A.:
Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 45 647-657 (2000).
MR 1836295 |
Zbl 0990.30010
[17] Ma, W., Minda, D.:
A unified treatment of some special classes of univalent functions. {Proceedings of the Conference on Complex Analysis, 1992, the Nankai Institute of Mathematics, Tianjin, China} Z. Li et al. Conf. Proc. Lecture Notes Anal. I International Press, Cambridge 157-169 (1994).
MR 1343506 |
Zbl 0823.30007
[19] Mishra, A. K., Gochhayat, P.:
The Fekete-Szegő problem for $k$-uniformly convex functions and for a class defined by the Owa-Srivastava operator. J. Math. Anal. Appl. 347 563-572 (2008).
DOI 10.1016/j.jmaa.2008.06.009 |
MR 2440350
[21] Orhan, H., Gunes, E.:
Fekete-Szegő inequality for certain subclass of analytic functions. Gen. Math. 14 41-54 (2006).
MR 2233678 |
Zbl 1164.30345
[23] Orhan, H., Yagmur, N., Çağlar, M.:
Coefficient estimates for Sakaguchi type functions. Sarajevo J. Math. 8(21) 235-244 (2012).
DOI 10.5644/SJM.08.2.05 |
MR 3057883
[24] Owa, S., Sekine, T., Yamakawa, R.:
Notes on Sakaguchi functions. Aust. J. Math. Anal. Appl. (electronic only) 3 Article 12, 7 pages (2006).
MR 2223016 |
Zbl 1090.30024
[27] Răducanu, D., Orhan, H.:
Subclasses of analytic functions defined by a generalized differential operator. Int. J. Math. Anal., Ruse 4 1-15 (2010).
MR 2657755 |
Zbl 1195.30031
[30] Sălăgean, G. S.:
Subclasses of univalent functions. Complex Analysis---fifth Romanian-Finnish Seminar, Part 1, Bucharest, 1981 C. Andreian Cazacu et al. Lecture Notes in Math. 1013 Springer, Berlin 362-372 (1983).
MR 0738107 |
Zbl 0531.30009