[1] Agiza, H. N., Elabbasy, E. M., El-Metwally, H., Elsadany, A. A.:
Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal., Real World Appl. 10 116-129 (2009).
MR 2451695 |
Zbl 1154.37335
[3] Dai, B., Zou, J.:
Periodic solutions of a discrete-time diffusive system governed by backward difference equations. Adv. Difference Equ. 2005 263-274 (2005).
MR 2201685 |
Zbl 1128.39300
[7] Freedman, H. I.:
Deterministic Mathematical Models in Population Ecology. Monographs and Textbooks in Pure and Applied Mathematics 57 Marcel Dekker, New York (1980).
MR 0586941 |
Zbl 0448.92023
[10] Jiao, J., Cai, S., Chen, L.:
Dynamical behaviors of a biological management model with impulsive stocking juvenile predators and continuous harvesting adult predators. J. Appl. Math. Comput. 35 483-495 (2011).
DOI 10.1007/s12190-009-0372-0 |
MR 2748380 |
Zbl 1216.34041
[12] Kar, T. K., Misra, S., Mukhopadhyay, B.:
A bioeconomic model of a ratio-dependent predator-prey system and optimal harvesting. J. Appl. Math. Comput. 22 387-401 (2006).
DOI 10.1007/BF02896487 |
MR 2248467
[13] Ko, W., Ryu, K.:
Coexistence states of a nonlinear Lotka-Volterra type predator-prey model with cross-diffusion. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 e1109--e1115 (2009).
DOI 10.1016/j.na.2009.01.097 |
MR 2671903 |
Zbl 1238.35162
[15] Li, Y., Zhao, K., Ye, Y.:
Multiple positive periodic solutions of $n$ species delay competition systems with harvesting terms. Nonlinear Anal., Real World Appl. 12 1013-1022 (2011).
MR 2736189 |
Zbl 1225.34094
[16] Liu, Q., Xu, R.:
Periodic solutions for a delayed one-predator and two-prey system with Holling type-{II} functional response. Ann. Differential Equations 21 14-28 (2005).
MR 2133880
[18] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.:
Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal., Real World Appl. 7 1104-1118 (2006).
MR 2260902 |
Zbl 1104.92065
[19] Pei, Y., Chen, L., Zhang, Q., Li, C.:
Extinction and permanence of one-prey multi-predators of Holling type {II} function response system with impulsive biological control. J. Theoret. Biol. 235 495-503 (2005).
DOI 10.1016/j.jtbi.2005.02.003 |
MR 2158283
[20] Scheffer, M.:
Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62 271-282 (1991).
DOI 10.2307/3545491
[21] Song, X., Li, Y.:
Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Nonlinear Anal., Real World Appl. 9 64-79 (2008).
MR 2370163 |
Zbl 1142.34031
[22] Wang, G.-Q., Cheng, S. S.:
Positive periodic solutions for nonlinear difference equations via a continuation theorem. Adv. Difference Equ. 2004 311-320 (2004).
MR 2129756 |
Zbl 1095.39011
[23] Wang, L.-L., Li, W.-T., Zhao, P.-H.:
Existence and global stability of positive periodic solutions of a discrete predator-prey system with delays. Adv. Difference Equ. 2004 321-336 (2004).
MR 2129757 |
Zbl 1081.39007
[24] Wiener, J.:
Differential equations with piecewise constant delays. Trends in Theory and Practice of Nonlinear Differential Equations V. Lakshmikantham Proc. Int. Conf., Arlington/Tex. 1982. Lecture Notes in Pure and Appl. Math. 90 Dekker, New York 547-552 (1984).
MR 0741544 |
Zbl 0557.34059
[26] Zhang, J., Fang, H.:
Multiple periodic solutions for a discrete time model of plankton allelopathy. Adv. Difference Equ. (electronic only) 2006 Article ID 90479, 14 pages (2006).
MR 2209678 |
Zbl 1134.39008
[29] Zhang, Z., Hou, Z.:
Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms. Nonlinear Anal., Real World Appl. 11 1560-1571 (2010).
MR 2646569 |
Zbl 1198.34081
[30] Zhang, Z., Luo, J.:
Multiple periodic solutions of a delayed predator-prey system with stage structure for the predator. Nonlinear Anal., Real World Appl. 11 4109-4120 (2010).
MR 2683859 |
Zbl 1205.34111
[31] Zhuang, K., Wen, Z.:
Dynamics of a discrete three species food chain system. Int. J. Comput. Math. Sci. 5 13-15 (2011).
MR 2659270